This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the base scalar from a scalar polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| ply1sclid.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | ply1sclid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 𝑋 = ( ( coe1 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | ply1sclid.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 5 | 1 2 3 4 | coe1scl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( coe1 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ) |
| 6 | 5 | fveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( ( coe1 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 0 ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) ) |
| 7 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 8 | iftrue | ⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) = 𝑋 ) | |
| 9 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) | |
| 10 | 8 9 | fvmptg | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = 𝑋 ) |
| 11 | 7 10 | mpan | ⊢ ( 𝑋 ∈ 𝐾 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = 𝑋 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = 𝑋 ) |
| 13 | 6 12 | eqtr2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 𝑋 = ( ( coe1 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 0 ) ) |