This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function is nondecreasing on the nonnegative reals. (Contributed by NM, 21-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | le2sq2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐵 ) | |
| 2 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | letr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 𝐵 ) ) | |
| 5 | 3 4 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 𝐵 ) ) |
| 6 | 5 | exp4b | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐴 ≤ 𝐵 → 0 ≤ 𝐵 ) ) ) ) |
| 7 | 6 | com23 | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐵 ∈ ℝ → ( 𝐴 ≤ 𝐵 → 0 ≤ 𝐵 ) ) ) ) |
| 8 | 7 | imp43 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → 0 ≤ 𝐵 ) |
| 9 | 2 8 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 10 | le2sq | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) | |
| 11 | 9 10 | syldan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
| 12 | 1 11 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) |