This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos01gt0 | |- ( A e. ( 0 (,] 1 ) -> 0 < ( cos ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
| 5 | 4 | simp1bi | |- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
| 6 | 5 | resqcld | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. RR ) |
| 7 | 6 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. CC ) |
| 8 | 2cn | |- 2 e. CC |
|
| 9 | 3cn | |- 3 e. CC |
|
| 10 | 3ne0 | |- 3 =/= 0 |
|
| 11 | 9 10 | pm3.2i | |- ( 3 e. CC /\ 3 =/= 0 ) |
| 12 | div12 | |- ( ( 2 e. CC /\ ( A ^ 2 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
|
| 13 | 8 11 12 | mp3an13 | |- ( ( A ^ 2 ) e. CC -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 14 | 7 13 | syl | |- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 15 | 2z | |- 2 e. ZZ |
|
| 16 | expgt0 | |- ( ( A e. RR /\ 2 e. ZZ /\ 0 < A ) -> 0 < ( A ^ 2 ) ) |
|
| 17 | 15 16 | mp3an2 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( A ^ 2 ) ) |
| 18 | 17 | 3adant3 | |- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> 0 < ( A ^ 2 ) ) |
| 19 | 4 18 | sylbi | |- ( A e. ( 0 (,] 1 ) -> 0 < ( A ^ 2 ) ) |
| 20 | 2lt3 | |- 2 < 3 |
|
| 21 | 2re | |- 2 e. RR |
|
| 22 | 3re | |- 3 e. RR |
|
| 23 | 3pos | |- 0 < 3 |
|
| 24 | 21 22 22 23 | ltdiv1ii | |- ( 2 < 3 <-> ( 2 / 3 ) < ( 3 / 3 ) ) |
| 25 | 20 24 | mpbi | |- ( 2 / 3 ) < ( 3 / 3 ) |
| 26 | 9 10 | dividi | |- ( 3 / 3 ) = 1 |
| 27 | 25 26 | breqtri | |- ( 2 / 3 ) < 1 |
| 28 | 21 22 10 | redivcli | |- ( 2 / 3 ) e. RR |
| 29 | ltmul2 | |- ( ( ( 2 / 3 ) e. RR /\ 1 e. RR /\ ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) |
|
| 30 | 28 2 29 | mp3an12 | |- ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) |
| 31 | 27 30 | mpbii | |- ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) |
| 32 | 6 19 31 | syl2anc | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) |
| 33 | 7 | mulridd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. 1 ) = ( A ^ 2 ) ) |
| 34 | 32 33 | breqtrd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( A ^ 2 ) ) |
| 35 | 14 34 | eqbrtrd | |- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) ) |
| 36 | 0re | |- 0 e. RR |
|
| 37 | ltle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
|
| 38 | 36 37 | mpan | |- ( A e. RR -> ( 0 < A -> 0 <_ A ) ) |
| 39 | 38 | imdistani | |- ( ( A e. RR /\ 0 < A ) -> ( A e. RR /\ 0 <_ A ) ) |
| 40 | le2sq2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( 1 e. RR /\ A <_ 1 ) ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
|
| 41 | 2 40 | mpanr1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 42 | 39 41 | stoic3 | |- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 43 | 4 42 | sylbi | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 44 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 45 | 43 44 | breqtrdi | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ 1 ) |
| 46 | redivcl | |- ( ( ( A ^ 2 ) e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) |
|
| 47 | 22 10 46 | mp3an23 | |- ( ( A ^ 2 ) e. RR -> ( ( A ^ 2 ) / 3 ) e. RR ) |
| 48 | 6 47 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) |
| 49 | remulcl | |- ( ( 2 e. RR /\ ( ( A ^ 2 ) / 3 ) e. RR ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) |
|
| 50 | 21 48 49 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) |
| 51 | ltletr | |- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR /\ 1 e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
|
| 52 | 2 51 | mp3an3 | |- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
| 53 | 50 6 52 | syl2anc | |- ( A e. ( 0 (,] 1 ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
| 54 | 35 45 53 | mp2and | |- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) |
| 55 | posdif | |- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ 1 e. RR ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) |
|
| 56 | 50 2 55 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) |
| 57 | 54 56 | mpbid | |- ( A e. ( 0 (,] 1 ) -> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) |
| 58 | cos01bnd | |- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |
|
| 59 | 58 | simpld | |- ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) |
| 60 | resubcl | |- ( ( 1 e. RR /\ ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) |
|
| 61 | 2 50 60 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) |
| 62 | 5 | recoscld | |- ( A e. ( 0 (,] 1 ) -> ( cos ` A ) e. RR ) |
| 63 | lttr | |- ( ( 0 e. RR /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) |
|
| 64 | 36 61 62 63 | mp3an2i | |- ( A e. ( 0 (,] 1 ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) |
| 65 | 57 59 64 | mp2and | |- ( A e. ( 0 (,] 1 ) -> 0 < ( cos ` A ) ) |