This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin02gt0 | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | 2re | ⊢ 2 ∈ ℝ | |
| 3 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) |
| 5 | rehalfcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ∈ ℝ ) |
| 7 | 4 6 | sylbi | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 𝐴 / 2 ) ∈ ℝ ) |
| 8 | resincl | ⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) | |
| 9 | recoscl | ⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) | |
| 10 | 8 9 | remulcld | ⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
| 11 | 7 10 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
| 12 | 2pos | ⊢ 0 < 2 | |
| 13 | divgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( 𝐴 / 2 ) ) | |
| 14 | 2 12 13 | mpanr12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 / 2 ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → 0 < ( 𝐴 / 2 ) ) |
| 16 | 2 12 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 17 | lediv1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 ≤ 2 ↔ ( 𝐴 / 2 ) ≤ ( 2 / 2 ) ) ) | |
| 18 | 2 16 17 | mp3an23 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 2 ↔ ( 𝐴 / 2 ) ≤ ( 2 / 2 ) ) ) |
| 19 | 18 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ≤ ( 2 / 2 ) ) |
| 20 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 21 | 19 20 | breqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ≤ 1 ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ≤ 1 ) |
| 23 | 6 15 22 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) |
| 24 | 1re | ⊢ 1 ∈ ℝ | |
| 25 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) ) | |
| 26 | 1 24 25 | mp2an | ⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) |
| 27 | 23 4 26 | 3imtr4i | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ) |
| 28 | sin01gt0 | ⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) → 0 < ( sin ‘ ( 𝐴 / 2 ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ ( 𝐴 / 2 ) ) ) |
| 30 | cos01gt0 | ⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) → 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) | |
| 31 | 27 30 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) |
| 32 | axmulgt0 | ⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ∧ ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) → ( ( 0 < ( sin ‘ ( 𝐴 / 2 ) ) ∧ 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) | |
| 33 | 8 9 32 | syl2anc | ⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( ( 0 < ( sin ‘ ( 𝐴 / 2 ) ) ∧ 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 34 | 7 33 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( ( 0 < ( sin ‘ ( 𝐴 / 2 ) ) ∧ 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 35 | 29 31 34 | mp2and | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) |
| 36 | axmulgt0 | ⊢ ( ( 2 ∈ ℝ ∧ ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) → ( ( 0 < 2 ∧ 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) ) | |
| 37 | 2 36 | mpan | ⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ → ( ( 0 < 2 ∧ 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
| 38 | 12 37 | mpani | ⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ → ( 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
| 39 | 11 35 38 | sylc | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 40 | 7 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 𝐴 / 2 ) ∈ ℂ ) |
| 41 | sin2t | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) | |
| 42 | 40 41 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 43 | 39 42 | breqtrrd | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) ) |
| 44 | 4 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 𝐴 ∈ ℝ ) |
| 45 | 44 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 𝐴 ∈ ℂ ) |
| 46 | 2cn | ⊢ 2 ∈ ℂ | |
| 47 | 2ne0 | ⊢ 2 ≠ 0 | |
| 48 | divcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) | |
| 49 | 46 47 48 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
| 50 | 45 49 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
| 51 | 50 | fveq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( sin ‘ 𝐴 ) ) |
| 52 | 43 51 | breqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 𝐴 ) ) |