This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzsubr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| cntzsubr.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | ||
| cntzsubr.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzsubr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzsubr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | cntzsubr.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 3 | cntzsubr.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | 2 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 5 | 4 3 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 6 | 5 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 7 | simpll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Ring ) | |
| 8 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) | |
| 9 | 8 | adantll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 12 | 1 10 11 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 13 | 7 9 12 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 14 | 1 10 11 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 15 | 7 9 14 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 16 | 13 15 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 18 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) | |
| 19 | 1 11 | ring0cl | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 21 | 2 10 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 22 | 4 21 3 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
| 23 | 18 20 22 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
| 24 | 17 23 | mpbird | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 25 | 24 | ne0d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ≠ ∅ ) |
| 26 | simpl2 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 27 | simpr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 28 | 21 3 | cntzi | ⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 29 | 26 27 28 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 30 | simpl3 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 31 | 21 3 | cntzi | ⊢ ( ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 32 | 30 27 31 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 33 | 29 32 | oveq12d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 34 | simpl1l | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Ring ) | |
| 35 | 5 26 | sselid | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 36 | 5 30 | sselid | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 37 | simp1r | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) | |
| 38 | 37 | sselda | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 39 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 40 | 1 39 10 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 41 | 34 35 36 38 40 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 42 | 1 39 10 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 43 | 34 38 35 36 42 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 44 | 33 41 43 | 3eqtr4d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 46 | simp1l | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) | |
| 47 | simp2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 48 | 5 47 | sselid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 49 | simp3 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 50 | 5 49 | sselid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
| 51 | 1 39 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 52 | 46 48 50 51 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 53 | 4 21 3 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 54 | 37 52 53 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 55 | 45 54 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 56 | 55 | 3expa | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 57 | 56 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 58 | 28 | adantll | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 59 | 58 | fveq2d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 60 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 61 | simplll | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Ring ) | |
| 62 | simplr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 63 | 5 62 | sselid | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 64 | simplr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) | |
| 65 | 64 | sselda | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 66 | 1 10 60 61 63 65 | ringmneg1 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 67 | 1 10 60 61 65 63 | ringmneg2 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 68 | 59 66 67 | 3eqtr4d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 69 | 68 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 70 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 71 | 70 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Grp ) |
| 72 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 73 | 5 72 | sselid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 74 | 1 60 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 75 | 71 73 74 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 76 | 4 21 3 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 77 | 64 75 76 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 78 | 69 77 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 79 | 57 78 | jca | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 80 | 79 | ralrimiva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 81 | 70 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → 𝑅 ∈ Grp ) |
| 82 | 1 39 60 | issubg2 | ⊢ ( 𝑅 ∈ Grp → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
| 83 | 81 82 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
| 84 | 6 25 80 83 | mpbir3and | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 85 | 2 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 86 | 4 3 | cntzsubm | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 87 | 85 86 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 88 | 2 | issubrg3 | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) ) ) |
| 89 | 88 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) ) ) |
| 90 | 84 87 89 | mpbir2and | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑅 ) ) |