This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzsubr.b | |- B = ( Base ` R ) |
|
| cntzsubr.m | |- M = ( mulGrp ` R ) |
||
| cntzsubr.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzsubr | |- ( ( R e. Ring /\ S C_ B ) -> ( Z ` S ) e. ( SubRing ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzsubr.b | |- B = ( Base ` R ) |
|
| 2 | cntzsubr.m | |- M = ( mulGrp ` R ) |
|
| 3 | cntzsubr.z | |- Z = ( Cntz ` M ) |
|
| 4 | 2 1 | mgpbas | |- B = ( Base ` M ) |
| 5 | 4 3 | cntzssv | |- ( Z ` S ) C_ B |
| 6 | 5 | a1i | |- ( ( R e. Ring /\ S C_ B ) -> ( Z ` S ) C_ B ) |
| 7 | simpll | |- ( ( ( R e. Ring /\ S C_ B ) /\ z e. S ) -> R e. Ring ) |
|
| 8 | ssel2 | |- ( ( S C_ B /\ z e. S ) -> z e. B ) |
|
| 9 | 8 | adantll | |- ( ( ( R e. Ring /\ S C_ B ) /\ z e. S ) -> z e. B ) |
| 10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 11 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 12 | 1 10 11 | ringlz | |- ( ( R e. Ring /\ z e. B ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) |
| 13 | 7 9 12 | syl2anc | |- ( ( ( R e. Ring /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) |
| 14 | 1 10 11 | ringrz | |- ( ( R e. Ring /\ z e. B ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 15 | 7 9 14 | syl2anc | |- ( ( ( R e. Ring /\ S C_ B ) /\ z e. S ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 16 | 13 15 | eqtr4d | |- ( ( ( R e. Ring /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) |
| 17 | 16 | ralrimiva | |- ( ( R e. Ring /\ S C_ B ) -> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) |
| 18 | simpr | |- ( ( R e. Ring /\ S C_ B ) -> S C_ B ) |
|
| 19 | 1 11 | ring0cl | |- ( R e. Ring -> ( 0g ` R ) e. B ) |
| 20 | 19 | adantr | |- ( ( R e. Ring /\ S C_ B ) -> ( 0g ` R ) e. B ) |
| 21 | 2 10 | mgpplusg | |- ( .r ` R ) = ( +g ` M ) |
| 22 | 4 21 3 | cntzel | |- ( ( S C_ B /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) |
| 23 | 18 20 22 | syl2anc | |- ( ( R e. Ring /\ S C_ B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) |
| 24 | 17 23 | mpbird | |- ( ( R e. Ring /\ S C_ B ) -> ( 0g ` R ) e. ( Z ` S ) ) |
| 25 | 24 | ne0d | |- ( ( R e. Ring /\ S C_ B ) -> ( Z ` S ) =/= (/) ) |
| 26 | simpl2 | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) |
|
| 27 | simpr | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> z e. S ) |
|
| 28 | 21 3 | cntzi | |- ( ( x e. ( Z ` S ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
| 29 | 26 27 28 | syl2anc | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
| 30 | simpl3 | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. ( Z ` S ) ) |
|
| 31 | 21 3 | cntzi | |- ( ( y e. ( Z ` S ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) |
| 32 | 30 27 31 | syl2anc | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) |
| 33 | 29 32 | oveq12d | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 34 | simpl1l | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> R e. Ring ) |
|
| 35 | 5 26 | sselid | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) |
| 36 | 5 30 | sselid | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. B ) |
| 37 | simp1r | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> S C_ B ) |
|
| 38 | 37 | sselda | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) |
| 39 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 40 | 1 39 10 | ringdir | |- ( ( R e. Ring /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
| 41 | 34 35 36 38 40 | syl13anc | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
| 42 | 1 39 10 | ringdi | |- ( ( R e. Ring /\ ( z e. B /\ x e. B /\ y e. B ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 43 | 34 38 35 36 42 | syl13anc | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 44 | 33 41 43 | 3eqtr4d | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) |
| 45 | 44 | ralrimiva | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) |
| 46 | simp1l | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> R e. Ring ) |
|
| 47 | simp2 | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. ( Z ` S ) ) |
|
| 48 | 5 47 | sselid | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. B ) |
| 49 | simp3 | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. ( Z ` S ) ) |
|
| 50 | 5 49 | sselid | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. B ) |
| 51 | 1 39 | ringacl | |- ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( x ( +g ` R ) y ) e. B ) |
| 52 | 46 48 50 51 | syl3anc | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. B ) |
| 53 | 4 21 3 | cntzel | |- ( ( S C_ B /\ ( x ( +g ` R ) y ) e. B ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) |
| 54 | 37 52 53 | syl2anc | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) |
| 55 | 45 54 | mpbird | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
| 56 | 55 | 3expa | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
| 57 | 56 | ralrimiva | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
| 58 | 28 | adantll | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
| 59 | 58 | fveq2d | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) |
| 60 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 61 | simplll | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> R e. Ring ) |
|
| 62 | simplr | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) |
|
| 63 | 5 62 | sselid | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) |
| 64 | simplr | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> S C_ B ) |
|
| 65 | 64 | sselda | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) |
| 66 | 1 10 60 61 63 65 | ringmneg1 | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) ) |
| 67 | 1 10 60 61 65 63 | ringmneg2 | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) |
| 68 | 59 66 67 | 3eqtr4d | |- ( ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) |
| 69 | 68 | ralrimiva | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) |
| 70 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 71 | 70 | ad2antrr | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> R e. Grp ) |
| 72 | simpr | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. ( Z ` S ) ) |
|
| 73 | 5 72 | sselid | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. B ) |
| 74 | 1 60 | grpinvcl | |- ( ( R e. Grp /\ x e. B ) -> ( ( invg ` R ) ` x ) e. B ) |
| 75 | 71 73 74 | syl2anc | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. B ) |
| 76 | 4 21 3 | cntzel | |- ( ( S C_ B /\ ( ( invg ` R ) ` x ) e. B ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) |
| 77 | 64 75 76 | syl2anc | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) |
| 78 | 69 77 | mpbird | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. ( Z ` S ) ) |
| 79 | 57 78 | jca | |- ( ( ( R e. Ring /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) |
| 80 | 79 | ralrimiva | |- ( ( R e. Ring /\ S C_ B ) -> A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) |
| 81 | 70 | adantr | |- ( ( R e. Ring /\ S C_ B ) -> R e. Grp ) |
| 82 | 1 39 60 | issubg2 | |- ( R e. Grp -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) |
| 83 | 81 82 | syl | |- ( ( R e. Ring /\ S C_ B ) -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) |
| 84 | 6 25 80 83 | mpbir3and | |- ( ( R e. Ring /\ S C_ B ) -> ( Z ` S ) e. ( SubGrp ` R ) ) |
| 85 | 2 | ringmgp | |- ( R e. Ring -> M e. Mnd ) |
| 86 | 4 3 | cntzsubm | |- ( ( M e. Mnd /\ S C_ B ) -> ( Z ` S ) e. ( SubMnd ` M ) ) |
| 87 | 85 86 | sylan | |- ( ( R e. Ring /\ S C_ B ) -> ( Z ` S ) e. ( SubMnd ` M ) ) |
| 88 | 2 | issubrg3 | |- ( R e. Ring -> ( ( Z ` S ) e. ( SubRing ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ ( Z ` S ) e. ( SubMnd ` M ) ) ) ) |
| 89 | 88 | adantr | |- ( ( R e. Ring /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRing ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ ( Z ` S ) e. ( SubMnd ` M ) ) ) ) |
| 90 | 84 87 89 | mpbir2and | |- ( ( R e. Ring /\ S C_ B ) -> ( Z ` S ) e. ( SubRing ` R ) ) |