This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubrg3.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| Assertion | issubrg3 | ⊢ ( 𝑅 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrg3.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | 2 3 4 | issubrg2 | ⊢ ( 𝑅 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝑅 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) ) |
| 8 | 1 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 9 | 2 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 10 | 1 2 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 11 | 1 3 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 12 | 1 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 13 | 10 11 12 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 14 | 3anass | ⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) | |
| 15 | 13 14 | bitrdi | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) ) |
| 16 | 15 | baibd | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 17 | 8 9 16 | syl2an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 18 | 17 | pm5.32da | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) ) |
| 19 | 7 18 | bitr4d | ⊢ ( 𝑅 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) ) ) |