This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a product in a ring. ( mulneg2 analog.) Compared with rngmneg2 , the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| ringneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ringmneg2 | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 4 | ringneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ringneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 9 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 10 | 1 9 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 12 | 1 3 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 13 | 8 11 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 14 | 1 2 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 · ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 15 | 4 5 6 13 14 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 · ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 16 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 17 | 4 5 6 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 18 | 1 2 9 3 4 17 | ringnegr | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
| 19 | 1 2 9 3 4 6 | ringnegr | ⊢ ( 𝜑 → ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ 𝑌 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ) |
| 21 | 15 18 20 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |