This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uncmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | uncmp | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → 𝐽 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → 𝐽 ∈ Top ) | |
| 3 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝐽 ∈ Top ) | |
| 4 | ssun1 | ⊢ 𝑆 ⊆ ( 𝑆 ∪ 𝑇 ) | |
| 5 | sseq2 | ⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → ( 𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ( 𝑆 ∪ 𝑇 ) ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → 𝑆 ⊆ 𝑋 ) |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑆 ⊆ 𝑋 ) |
| 8 | 1 | cmpsub | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 9 | 3 7 8 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 10 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑋 = ∪ 𝑐 ) | |
| 11 | 7 10 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑆 ⊆ ∪ 𝑐 ) |
| 12 | unieq | ⊢ ( 𝑚 = 𝑐 → ∪ 𝑚 = ∪ 𝑐 ) | |
| 13 | 12 | sseq2d | ⊢ ( 𝑚 = 𝑐 → ( 𝑆 ⊆ ∪ 𝑚 ↔ 𝑆 ⊆ ∪ 𝑐 ) ) |
| 14 | pweq | ⊢ ( 𝑚 = 𝑐 → 𝒫 𝑚 = 𝒫 𝑐 ) | |
| 15 | 14 | ineq1d | ⊢ ( 𝑚 = 𝑐 → ( 𝒫 𝑚 ∩ Fin ) = ( 𝒫 𝑐 ∩ Fin ) ) |
| 16 | 15 | rexeqdv | ⊢ ( 𝑚 = 𝑐 → ( ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ↔ ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) |
| 17 | 13 16 | imbi12d | ⊢ ( 𝑚 = 𝑐 → ( ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ↔ ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 18 | 17 | rspcv | ⊢ ( 𝑐 ∈ 𝒫 𝐽 → ( ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) → ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 19 | 18 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) → ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 20 | 11 19 | mpid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) |
| 21 | 9 20 | sylbid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) |
| 22 | ssun2 | ⊢ 𝑇 ⊆ ( 𝑆 ∪ 𝑇 ) | |
| 23 | sseq2 | ⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → ( 𝑇 ⊆ 𝑋 ↔ 𝑇 ⊆ ( 𝑆 ∪ 𝑇 ) ) ) | |
| 24 | 22 23 | mpbiri | ⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → 𝑇 ⊆ 𝑋 ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑇 ⊆ 𝑋 ) |
| 26 | 1 | cmpsub | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑇 ) ∈ Comp ↔ ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 27 | 3 25 26 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑇 ) ∈ Comp ↔ ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 28 | 25 10 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑇 ⊆ ∪ 𝑐 ) |
| 29 | unieq | ⊢ ( 𝑟 = 𝑐 → ∪ 𝑟 = ∪ 𝑐 ) | |
| 30 | 29 | sseq2d | ⊢ ( 𝑟 = 𝑐 → ( 𝑇 ⊆ ∪ 𝑟 ↔ 𝑇 ⊆ ∪ 𝑐 ) ) |
| 31 | pweq | ⊢ ( 𝑟 = 𝑐 → 𝒫 𝑟 = 𝒫 𝑐 ) | |
| 32 | 31 | ineq1d | ⊢ ( 𝑟 = 𝑐 → ( 𝒫 𝑟 ∩ Fin ) = ( 𝒫 𝑐 ∩ Fin ) ) |
| 33 | 32 | rexeqdv | ⊢ ( 𝑟 = 𝑐 → ( ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) |
| 34 | 30 33 | imbi12d | ⊢ ( 𝑟 = 𝑐 → ( ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ↔ ( 𝑇 ⊆ ∪ 𝑐 → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 35 | 34 | rspcv | ⊢ ( 𝑐 ∈ 𝒫 𝐽 → ( ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ( 𝑇 ⊆ ∪ 𝑐 → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 36 | 35 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ( 𝑇 ⊆ ∪ 𝑐 → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 37 | 28 36 | mpid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) |
| 38 | 27 37 | sylbid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑇 ) ∈ Comp → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) |
| 39 | reeanv | ⊢ ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ↔ ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) | |
| 40 | elinel1 | ⊢ ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑛 ∈ 𝒫 𝑐 ) | |
| 41 | 40 | elpwid | ⊢ ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑛 ⊆ 𝑐 ) |
| 42 | elinel1 | ⊢ ( 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑠 ∈ 𝒫 𝑐 ) | |
| 43 | 42 | elpwid | ⊢ ( 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑠 ⊆ 𝑐 ) |
| 44 | 41 43 | anim12i | ⊢ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) → ( 𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐 ) ) |
| 45 | 44 | ad2antrl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐 ) ) |
| 46 | unss | ⊢ ( ( 𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐 ) ↔ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ) | |
| 47 | 45 46 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ) |
| 48 | elinel2 | ⊢ ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑛 ∈ Fin ) | |
| 49 | elinel2 | ⊢ ( 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑠 ∈ Fin ) | |
| 50 | unfi | ⊢ ( ( 𝑛 ∈ Fin ∧ 𝑠 ∈ Fin ) → ( 𝑛 ∪ 𝑠 ) ∈ Fin ) | |
| 51 | 48 49 50 | syl2an | ⊢ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) → ( 𝑛 ∪ 𝑠 ) ∈ Fin ) |
| 52 | 51 | ad2antrl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ∈ Fin ) |
| 53 | 47 52 | jca | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ) |
| 54 | elin | ⊢ ( ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ↔ ( ( 𝑛 ∪ 𝑠 ) ∈ 𝒫 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ) | |
| 55 | vex | ⊢ 𝑐 ∈ V | |
| 56 | 55 | elpw2 | ⊢ ( ( 𝑛 ∪ 𝑠 ) ∈ 𝒫 𝑐 ↔ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ) |
| 57 | 56 | anbi1i | ⊢ ( ( ( 𝑛 ∪ 𝑠 ) ∈ 𝒫 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ↔ ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ) |
| 58 | 54 57 | bitr2i | ⊢ ( ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ↔ ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 59 | 53 58 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 60 | simpllr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 = ( 𝑆 ∪ 𝑇 ) ) | |
| 61 | ssun3 | ⊢ ( 𝑆 ⊆ ∪ 𝑛 → 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) | |
| 62 | ssun4 | ⊢ ( 𝑇 ⊆ ∪ 𝑠 → 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) | |
| 63 | 61 62 | anim12i | ⊢ ( ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) → ( 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ∧ 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) ) |
| 64 | 63 | ad2antll | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ∧ 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) ) |
| 65 | unss | ⊢ ( ( 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ∧ 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) ↔ ( 𝑆 ∪ 𝑇 ) ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) | |
| 66 | 64 65 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑆 ∪ 𝑇 ) ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) |
| 67 | 60 66 | eqsstrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) |
| 68 | uniun | ⊢ ∪ ( 𝑛 ∪ 𝑠 ) = ( ∪ 𝑛 ∪ ∪ 𝑠 ) | |
| 69 | 67 68 | sseqtrrdi | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 ⊆ ∪ ( 𝑛 ∪ 𝑠 ) ) |
| 70 | elpwi | ⊢ ( 𝑐 ∈ 𝒫 𝐽 → 𝑐 ⊆ 𝐽 ) | |
| 71 | 70 | adantr | ⊢ ( ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → 𝑐 ⊆ 𝐽 ) |
| 72 | 71 | ad2antlr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑐 ⊆ 𝐽 ) |
| 73 | 47 72 | sstrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ⊆ 𝐽 ) |
| 74 | uniss | ⊢ ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝐽 → ∪ ( 𝑛 ∪ 𝑠 ) ⊆ ∪ 𝐽 ) | |
| 75 | 74 1 | sseqtrrdi | ⊢ ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝐽 → ∪ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑋 ) |
| 76 | 73 75 | syl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ∪ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑋 ) |
| 77 | 69 76 | eqssd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 = ∪ ( 𝑛 ∪ 𝑠 ) ) |
| 78 | unieq | ⊢ ( 𝑑 = ( 𝑛 ∪ 𝑠 ) → ∪ 𝑑 = ∪ ( 𝑛 ∪ 𝑠 ) ) | |
| 79 | 78 | rspceeqv | ⊢ ( ( ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑋 = ∪ ( 𝑛 ∪ 𝑠 ) ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 80 | 59 77 79 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 81 | 80 | exp32 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) → ( ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 82 | 81 | rexlimdvv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 83 | 39 82 | biimtrrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 84 | 21 38 83 | syl2and | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 85 | 84 | impancom | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → ( ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 86 | 85 | expd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 87 | 86 | ralrimiv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 88 | 1 | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 89 | 2 87 88 | sylanbrc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → 𝐽 ∈ Comp ) |