This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | ||
| chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | ||
| chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | ||
| chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | ||
| chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | ||
| chscl.7 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐵 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | ||
| Assertion | chscllem4 | ⊢ ( 𝜑 → 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| 2 | chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | |
| 3 | chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | |
| 4 | chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | |
| 5 | chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | |
| 6 | chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | |
| 7 | chscl.7 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐵 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | |
| 8 | hlimf | ⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ | |
| 9 | ffun | ⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
| 10 | 8 9 | ax-mp | ⊢ Fun ⇝𝑣 |
| 11 | funbrfv | ⊢ ( Fun ⇝𝑣 → ( 𝐻 ⇝𝑣 𝑢 → ( ⇝𝑣 ‘ 𝐻 ) = 𝑢 ) ) | |
| 12 | 10 5 11 | mpsyl | ⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐻 ) = 𝑢 ) |
| 13 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ ℕ ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
| 14 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 15 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 16 | 1 15 | syl | ⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
| 17 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
| 19 | shsel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) ) | |
| 20 | 16 18 19 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 21 | 20 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 22 | 14 21 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 23 | simp3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) | |
| 24 | simp1l | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝜑 ) | |
| 25 | 24 1 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐴 ∈ Cℋ ) |
| 26 | 24 2 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐵 ∈ Cℋ ) |
| 27 | 24 3 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 28 | 24 4 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) |
| 29 | 24 5 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐻 ⇝𝑣 𝑢 ) |
| 30 | simp1r | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑘 ∈ ℕ ) | |
| 31 | simp2l | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑥 ∈ 𝐴 ) | |
| 32 | simp2r | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑦 ∈ 𝐵 ) | |
| 33 | 25 26 27 28 29 6 30 31 32 23 | chscllem3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑥 = ( 𝐹 ‘ 𝑘 ) ) |
| 34 | chsscon2 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) | |
| 35 | 2 1 34 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 36 | 3 35 | mpbid | ⊢ ( 𝜑 → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 37 | 24 36 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 38 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) | |
| 39 | 16 18 38 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
| 40 | 39 | feq3d | ⊢ ( 𝜑 → ( 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐻 : ℕ ⟶ ( 𝐵 +ℋ 𝐴 ) ) ) |
| 41 | 4 40 | mpbid | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐵 +ℋ 𝐴 ) ) |
| 42 | 24 41 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐻 : ℕ ⟶ ( 𝐵 +ℋ 𝐴 ) ) |
| 43 | shss | ⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) | |
| 44 | 16 43 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℋ ) |
| 45 | 24 44 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐴 ⊆ ℋ ) |
| 46 | 45 31 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑥 ∈ ℋ ) |
| 47 | shss | ⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) | |
| 48 | 18 47 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ℋ ) |
| 49 | 24 48 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐵 ⊆ ℋ ) |
| 50 | 49 32 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑦 ∈ ℋ ) |
| 51 | ax-hvcom | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) | |
| 52 | 46 50 51 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
| 53 | 23 52 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝑦 +ℎ 𝑥 ) ) |
| 54 | 26 25 37 42 29 7 30 32 31 53 | chscllem3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑦 = ( 𝐺 ‘ 𝑘 ) ) |
| 55 | 33 54 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) |
| 56 | 23 55 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) |
| 57 | 56 | 3exp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 58 | 57 | rexlimdvv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 59 | 22 58 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) |
| 60 | 59 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( 𝐻 ‘ 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 61 | 13 60 | eqtrd | ⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 62 | 1 2 3 4 5 6 | chscllem1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |
| 63 | 62 44 | fssd | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℋ ) |
| 64 | 2 1 36 41 5 7 | chscllem1 | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝐵 ) |
| 65 | 64 48 | fssd | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℋ ) |
| 66 | 1 2 3 4 5 6 | chscllem2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝𝑣 ) |
| 67 | funfvbrb | ⊢ ( Fun ⇝𝑣 → ( 𝐹 ∈ dom ⇝𝑣 ↔ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) ) | |
| 68 | 10 67 | ax-mp | ⊢ ( 𝐹 ∈ dom ⇝𝑣 ↔ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) |
| 69 | 66 68 | sylib | ⊢ ( 𝜑 → 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) |
| 70 | 2 1 36 41 5 7 | chscllem2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ⇝𝑣 ) |
| 71 | funfvbrb | ⊢ ( Fun ⇝𝑣 → ( 𝐺 ∈ dom ⇝𝑣 ↔ 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) ) | |
| 72 | 10 71 | ax-mp | ⊢ ( 𝐺 ∈ dom ⇝𝑣 ↔ 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) |
| 73 | 70 72 | sylib | ⊢ ( 𝜑 → 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) |
| 74 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 75 | 63 65 69 73 74 | hlimadd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ⇝𝑣 ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
| 76 | 61 75 | eqbrtrd | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
| 77 | funbrfv | ⊢ ( Fun ⇝𝑣 → ( 𝐻 ⇝𝑣 ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) → ( ⇝𝑣 ‘ 𝐻 ) = ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) ) | |
| 78 | 10 76 77 | mpsyl | ⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐻 ) = ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
| 79 | 12 78 | eqtr3d | ⊢ ( 𝜑 → 𝑢 = ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
| 80 | fvex | ⊢ ( ⇝𝑣 ‘ 𝐹 ) ∈ V | |
| 81 | 80 | chlimi | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐹 : ℕ ⟶ 𝐴 ∧ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) → ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ) |
| 82 | 1 62 69 81 | syl3anc | ⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ) |
| 83 | fvex | ⊢ ( ⇝𝑣 ‘ 𝐺 ) ∈ V | |
| 84 | 83 | chlimi | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐺 : ℕ ⟶ 𝐵 ∧ 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) → ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) |
| 85 | 2 64 73 84 | syl3anc | ⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) |
| 86 | shsva | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ∧ ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) → ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 87 | 16 18 86 | syl2anc | ⊢ ( 𝜑 → ( ( ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ∧ ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) → ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 88 | 82 85 87 | mp2and | ⊢ ( 𝜑 → ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 89 | 79 88 | eqeltrd | ⊢ ( 𝜑 → 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ) |