This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | |- ( ph -> A e. CH ) |
|
| chscl.2 | |- ( ph -> B e. CH ) |
||
| chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
||
| chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
||
| chscl.5 | |- ( ph -> H ~~>v u ) |
||
| chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
||
| chscl.7 | |- G = ( n e. NN |-> ( ( projh ` B ) ` ( H ` n ) ) ) |
||
| Assertion | chscllem4 | |- ( ph -> u e. ( A +H B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | |- ( ph -> A e. CH ) |
|
| 2 | chscl.2 | |- ( ph -> B e. CH ) |
|
| 3 | chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
|
| 4 | chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
|
| 5 | chscl.5 | |- ( ph -> H ~~>v u ) |
|
| 6 | chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
|
| 7 | chscl.7 | |- G = ( n e. NN |-> ( ( projh ` B ) ` ( H ` n ) ) ) |
|
| 8 | hlimf | |- ~~>v : dom ~~>v --> ~H |
|
| 9 | ffun | |- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
|
| 10 | 8 9 | ax-mp | |- Fun ~~>v |
| 11 | funbrfv | |- ( Fun ~~>v -> ( H ~~>v u -> ( ~~>v ` H ) = u ) ) |
|
| 12 | 10 5 11 | mpsyl | |- ( ph -> ( ~~>v ` H ) = u ) |
| 13 | 4 | feqmptd | |- ( ph -> H = ( k e. NN |-> ( H ` k ) ) ) |
| 14 | 4 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( H ` k ) e. ( A +H B ) ) |
| 15 | chsh | |- ( A e. CH -> A e. SH ) |
|
| 16 | 1 15 | syl | |- ( ph -> A e. SH ) |
| 17 | chsh | |- ( B e. CH -> B e. SH ) |
|
| 18 | 2 17 | syl | |- ( ph -> B e. SH ) |
| 19 | shsel | |- ( ( A e. SH /\ B e. SH ) -> ( ( H ` k ) e. ( A +H B ) <-> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ph -> ( ( H ` k ) e. ( A +H B ) <-> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) ) |
| 21 | 20 | biimpa | |- ( ( ph /\ ( H ` k ) e. ( A +H B ) ) -> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) |
| 22 | 14 21 | syldan | |- ( ( ph /\ k e. NN ) -> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) |
| 23 | simp3 | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( x +h y ) ) |
|
| 24 | simp1l | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ph ) |
|
| 25 | 24 1 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A e. CH ) |
| 26 | 24 2 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B e. CH ) |
| 27 | 24 3 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B C_ ( _|_ ` A ) ) |
| 28 | 24 4 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H : NN --> ( A +H B ) ) |
| 29 | 24 5 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H ~~>v u ) |
| 30 | simp1r | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> k e. NN ) |
|
| 31 | simp2l | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x e. A ) |
|
| 32 | simp2r | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y e. B ) |
|
| 33 | 25 26 27 28 29 6 30 31 32 23 | chscllem3 | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x = ( F ` k ) ) |
| 34 | chsscon2 | |- ( ( B e. CH /\ A e. CH ) -> ( B C_ ( _|_ ` A ) <-> A C_ ( _|_ ` B ) ) ) |
|
| 35 | 2 1 34 | syl2anc | |- ( ph -> ( B C_ ( _|_ ` A ) <-> A C_ ( _|_ ` B ) ) ) |
| 36 | 3 35 | mpbid | |- ( ph -> A C_ ( _|_ ` B ) ) |
| 37 | 24 36 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A C_ ( _|_ ` B ) ) |
| 38 | shscom | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) |
|
| 39 | 16 18 38 | syl2anc | |- ( ph -> ( A +H B ) = ( B +H A ) ) |
| 40 | 39 | feq3d | |- ( ph -> ( H : NN --> ( A +H B ) <-> H : NN --> ( B +H A ) ) ) |
| 41 | 4 40 | mpbid | |- ( ph -> H : NN --> ( B +H A ) ) |
| 42 | 24 41 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H : NN --> ( B +H A ) ) |
| 43 | shss | |- ( A e. SH -> A C_ ~H ) |
|
| 44 | 16 43 | syl | |- ( ph -> A C_ ~H ) |
| 45 | 24 44 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A C_ ~H ) |
| 46 | 45 31 | sseldd | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x e. ~H ) |
| 47 | shss | |- ( B e. SH -> B C_ ~H ) |
|
| 48 | 18 47 | syl | |- ( ph -> B C_ ~H ) |
| 49 | 24 48 | syl | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B C_ ~H ) |
| 50 | 49 32 | sseldd | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y e. ~H ) |
| 51 | ax-hvcom | |- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) = ( y +h x ) ) |
|
| 52 | 46 50 51 | syl2anc | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( x +h y ) = ( y +h x ) ) |
| 53 | 23 52 | eqtrd | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( y +h x ) ) |
| 54 | 26 25 37 42 29 7 30 32 31 53 | chscllem3 | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y = ( G ` k ) ) |
| 55 | 33 54 | oveq12d | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( x +h y ) = ( ( F ` k ) +h ( G ` k ) ) ) |
| 56 | 23 55 | eqtrd | |- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) |
| 57 | 56 | 3exp | |- ( ( ph /\ k e. NN ) -> ( ( x e. A /\ y e. B ) -> ( ( H ` k ) = ( x +h y ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) ) ) |
| 58 | 57 | rexlimdvv | |- ( ( ph /\ k e. NN ) -> ( E. x e. A E. y e. B ( H ` k ) = ( x +h y ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) ) |
| 59 | 22 58 | mpd | |- ( ( ph /\ k e. NN ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) |
| 60 | 59 | mpteq2dva | |- ( ph -> ( k e. NN |-> ( H ` k ) ) = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) ) |
| 61 | 13 60 | eqtrd | |- ( ph -> H = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) ) |
| 62 | 1 2 3 4 5 6 | chscllem1 | |- ( ph -> F : NN --> A ) |
| 63 | 62 44 | fssd | |- ( ph -> F : NN --> ~H ) |
| 64 | 2 1 36 41 5 7 | chscllem1 | |- ( ph -> G : NN --> B ) |
| 65 | 64 48 | fssd | |- ( ph -> G : NN --> ~H ) |
| 66 | 1 2 3 4 5 6 | chscllem2 | |- ( ph -> F e. dom ~~>v ) |
| 67 | funfvbrb | |- ( Fun ~~>v -> ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) ) |
|
| 68 | 10 67 | ax-mp | |- ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) |
| 69 | 66 68 | sylib | |- ( ph -> F ~~>v ( ~~>v ` F ) ) |
| 70 | 2 1 36 41 5 7 | chscllem2 | |- ( ph -> G e. dom ~~>v ) |
| 71 | funfvbrb | |- ( Fun ~~>v -> ( G e. dom ~~>v <-> G ~~>v ( ~~>v ` G ) ) ) |
|
| 72 | 10 71 | ax-mp | |- ( G e. dom ~~>v <-> G ~~>v ( ~~>v ` G ) ) |
| 73 | 70 72 | sylib | |- ( ph -> G ~~>v ( ~~>v ` G ) ) |
| 74 | eqid | |- ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) |
|
| 75 | 63 65 69 73 74 | hlimadd | |- ( ph -> ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
| 76 | 61 75 | eqbrtrd | |- ( ph -> H ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
| 77 | funbrfv | |- ( Fun ~~>v -> ( H ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) -> ( ~~>v ` H ) = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) ) |
|
| 78 | 10 76 77 | mpsyl | |- ( ph -> ( ~~>v ` H ) = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
| 79 | 12 78 | eqtr3d | |- ( ph -> u = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
| 80 | fvex | |- ( ~~>v ` F ) e. _V |
|
| 81 | 80 | chlimi | |- ( ( A e. CH /\ F : NN --> A /\ F ~~>v ( ~~>v ` F ) ) -> ( ~~>v ` F ) e. A ) |
| 82 | 1 62 69 81 | syl3anc | |- ( ph -> ( ~~>v ` F ) e. A ) |
| 83 | fvex | |- ( ~~>v ` G ) e. _V |
|
| 84 | 83 | chlimi | |- ( ( B e. CH /\ G : NN --> B /\ G ~~>v ( ~~>v ` G ) ) -> ( ~~>v ` G ) e. B ) |
| 85 | 2 64 73 84 | syl3anc | |- ( ph -> ( ~~>v ` G ) e. B ) |
| 86 | shsva | |- ( ( A e. SH /\ B e. SH ) -> ( ( ( ~~>v ` F ) e. A /\ ( ~~>v ` G ) e. B ) -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) ) |
|
| 87 | 16 18 86 | syl2anc | |- ( ph -> ( ( ( ~~>v ` F ) e. A /\ ( ~~>v ` G ) e. B ) -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) ) |
| 88 | 82 85 87 | mp2and | |- ( ph -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) |
| 89 | 79 88 | eqeltrd | |- ( ph -> u e. ( A +H B ) ) |