This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlimadd.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℋ ) | |
| hlimadd.4 | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℋ ) | ||
| hlimadd.5 | ⊢ ( 𝜑 → 𝐹 ⇝𝑣 𝐴 ) | ||
| hlimadd.6 | ⊢ ( 𝜑 → 𝐺 ⇝𝑣 𝐵 ) | ||
| hlimadd.7 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) +ℎ ( 𝐺 ‘ 𝑛 ) ) ) | ||
| Assertion | hlimadd | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 ( 𝐴 +ℎ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlimadd.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℋ ) | |
| 2 | hlimadd.4 | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℋ ) | |
| 3 | hlimadd.5 | ⊢ ( 𝜑 → 𝐹 ⇝𝑣 𝐴 ) | |
| 4 | hlimadd.6 | ⊢ ( 𝜑 → 𝐺 ⇝𝑣 𝐵 ) | |
| 5 | hlimadd.7 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) +ℎ ( 𝐺 ‘ 𝑛 ) ) ) | |
| 6 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℋ ) |
| 7 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℋ ) |
| 8 | hvaddcl | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℋ ∧ ( 𝐺 ‘ 𝑛 ) ∈ ℋ ) → ( ( 𝐹 ‘ 𝑛 ) +ℎ ( 𝐺 ‘ 𝑛 ) ) ∈ ℋ ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) +ℎ ( 𝐺 ‘ 𝑛 ) ) ∈ ℋ ) |
| 10 | 9 5 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ℋ ) |
| 11 | ax-hilex | ⊢ ℋ ∈ V | |
| 12 | nnex | ⊢ ℕ ∈ V | |
| 13 | 11 12 | elmap | ⊢ ( 𝐻 ∈ ( ℋ ↑m ℕ ) ↔ 𝐻 : ℕ ⟶ ℋ ) |
| 14 | 10 13 | sylibr | ⊢ ( 𝜑 → 𝐻 ∈ ( ℋ ↑m ℕ ) ) |
| 15 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 16 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 17 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 18 | eqid | ⊢ ( normℎ ∘ −ℎ ) = ( normℎ ∘ −ℎ ) | |
| 19 | 17 18 | hhims | ⊢ ( normℎ ∘ −ℎ ) = ( IndMet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 20 | 17 19 | hhxmet | ⊢ ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) |
| 21 | eqid | ⊢ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) = ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) | |
| 22 | 21 | mopntopon | ⊢ ( ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ ( TopOn ‘ ℋ ) ) |
| 23 | 20 22 | mp1i | ⊢ ( 𝜑 → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ ( TopOn ‘ ℋ ) ) |
| 24 | 17 | hhnv | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
| 25 | df-hba | ⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) | |
| 26 | 17 24 25 19 21 | h2hlm | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) |
| 27 | resss | ⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) | |
| 28 | 26 27 | eqsstri | ⊢ ⇝𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
| 29 | 28 | ssbri | ⊢ ( 𝐹 ⇝𝑣 𝐴 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝐴 ) |
| 30 | 3 29 | syl | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝐴 ) |
| 31 | 28 | ssbri | ⊢ ( 𝐺 ⇝𝑣 𝐵 → 𝐺 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝐵 ) |
| 32 | 4 31 | syl | ⊢ ( 𝜑 → 𝐺 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝐵 ) |
| 33 | 17 | hhva | ⊢ +ℎ = ( +𝑣 ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 34 | 19 21 33 | vacn | ⊢ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec → +ℎ ∈ ( ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ×t ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
| 35 | 24 34 | mp1i | ⊢ ( 𝜑 → +ℎ ∈ ( ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ×t ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
| 36 | 15 16 23 23 1 2 30 32 35 5 | lmcn2 | ⊢ ( 𝜑 → 𝐻 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( 𝐴 +ℎ 𝐵 ) ) |
| 37 | 26 | breqi | ⊢ ( 𝐻 ⇝𝑣 ( 𝐴 +ℎ 𝐵 ) ↔ 𝐻 ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ( 𝐴 +ℎ 𝐵 ) ) |
| 38 | ovex | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ V | |
| 39 | 38 | brresi | ⊢ ( 𝐻 ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ( 𝐴 +ℎ 𝐵 ) ↔ ( 𝐻 ∈ ( ℋ ↑m ℕ ) ∧ 𝐻 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( 𝐴 +ℎ 𝐵 ) ) ) |
| 40 | 37 39 | bitri | ⊢ ( 𝐻 ⇝𝑣 ( 𝐴 +ℎ 𝐵 ) ↔ ( 𝐻 ∈ ( ℋ ↑m ℕ ) ∧ 𝐻 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( 𝐴 +ℎ 𝐵 ) ) ) |
| 41 | 14 36 40 | sylanbrc | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 ( 𝐴 +ℎ 𝐵 ) ) |