This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-hvcom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | chba | ⊢ ℋ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℋ |
| 3 | cB | ⊢ 𝐵 | |
| 4 | 3 1 | wcel | ⊢ 𝐵 ∈ ℋ |
| 5 | 2 4 | wa | ⊢ ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) |
| 6 | cva | ⊢ +ℎ | |
| 7 | 0 3 6 | co | ⊢ ( 𝐴 +ℎ 𝐵 ) |
| 8 | 3 0 6 | co | ⊢ ( 𝐵 +ℎ 𝐴 ) |
| 9 | 7 8 | wceq | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
| 10 | 5 9 | wi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) ) |