This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004) (Revised by Mario Carneiro, 29-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( +ℎ “ ( 𝐴 × 𝐵 ) ) ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐶 ∈ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ) ) |
| 3 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 4 | ffn | ⊢ ( +ℎ : ( ℋ × ℋ ) ⟶ ℋ → +ℎ Fn ( ℋ × ℋ ) ) | |
| 5 | 3 4 | ax-mp | ⊢ +ℎ Fn ( ℋ × ℋ ) |
| 6 | shss | ⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) | |
| 7 | shss | ⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) | |
| 8 | xpss12 | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) ) |
| 10 | ovelimab | ⊢ ( ( +ℎ Fn ( ℋ × ℋ ) ∧ ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) ) → ( 𝐶 ∈ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) | |
| 11 | 5 9 10 | sylancr | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 12 | 2 11 | bitrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |