This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chlim.1 | ⊢ 𝐴 ∈ V | |
| Assertion | chlimi | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chlim.1 | ⊢ 𝐴 ∈ V | |
| 2 | isch2 | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) | |
| 3 | 2 | simprbi | ⊢ ( 𝐻 ∈ Cℋ → ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
| 4 | nnex | ⊢ ℕ ∈ V | |
| 5 | fex | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ ℕ ∈ V ) → 𝐹 ∈ V ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐹 : ℕ ⟶ 𝐻 → 𝐹 ∈ V ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐹 ∈ V ) |
| 8 | feq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ 𝐻 ↔ 𝐹 : ℕ ⟶ 𝐻 ) ) | |
| 9 | breq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥 ) ) | |
| 10 | 8 9 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) ) ) |
| 11 | 10 | imbi1d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| 13 | 12 | spcgv | ⊢ ( 𝐹 ∈ V → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| 14 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝐴 ) ) | |
| 15 | 14 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) ) ) |
| 16 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐻 ↔ 𝐴 ∈ 𝐻 ) ) | |
| 17 | 15 16 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) ) |
| 18 | 1 17 | spcv | ⊢ ( ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) |
| 19 | 13 18 | syl6 | ⊢ ( 𝐹 ∈ V → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) ) |
| 20 | 7 19 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) ) |
| 21 | 20 | pm2.43b | ⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) |
| 22 | 3 21 | syl | ⊢ ( 𝐻 ∈ Cℋ → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) |
| 23 | 22 | 3impib | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) |