This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | ||
| oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | ||
| cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | ||
| Assertion | cantnflem1b | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 7 | oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | |
| 8 | oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | |
| 9 | cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) | |
| 11 | 9 | oicl | ⊢ Ord dom 𝑂 |
| 12 | ovexd | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ∈ V ) | |
| 13 | 1 2 3 9 6 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
| 15 | 9 | oiiso | ⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 16 | 12 14 15 | syl2anc | ⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 17 | isof1o | ⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 19 | f1ocnv | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 ) | |
| 20 | f1of | ⊢ ( ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 22 | 1 2 3 4 5 6 7 8 | cantnflem1a | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
| 23 | 21 22 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 24 | ordelon | ⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) | |
| 25 | 11 23 24 | sylancr | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
| 26 | 11 | a1i | ⊢ ( 𝜑 → Ord dom 𝑂 ) |
| 27 | ordelon | ⊢ ( ( Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) | |
| 28 | 26 27 | sylan | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
| 29 | onsucb | ⊢ ( 𝑢 ∈ On ↔ suc 𝑢 ∈ On ) | |
| 30 | 28 29 | sylibr | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ On ) |
| 31 | 30 | adantrr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ On ) |
| 32 | ontri1 | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) | |
| 33 | 25 31 32 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 34 | 10 33 | mpbid | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ¬ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 35 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 36 | ordtr | ⊢ ( Ord dom 𝑂 → Tr dom 𝑂 ) | |
| 37 | 11 36 | mp1i | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Tr dom 𝑂 ) |
| 38 | simprl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ dom 𝑂 ) | |
| 39 | trsuc | ⊢ ( ( Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ dom 𝑂 ) | |
| 40 | 37 38 39 | syl2anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ dom 𝑂 ) |
| 41 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 42 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | |
| 43 | 35 40 41 42 | syl12anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 44 | fvex | ⊢ ( ◡ 𝑂 ‘ 𝑋 ) ∈ V | |
| 45 | 44 | epeli | ⊢ ( 𝑢 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 46 | fvex | ⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ V | |
| 47 | 46 | epeli | ⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 48 | 43 45 47 | 3bitr3g | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 49 | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) | |
| 50 | 18 22 49 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 52 | 51 | eleq2d | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) |
| 53 | 48 52 | bitrd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) |
| 54 | 34 53 | mtbid | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) |
| 55 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 56 | 55 | simp1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 57 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) | |
| 58 | 3 56 57 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 59 | suppssdm | ⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 | |
| 60 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 61 | 6 60 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 62 | 61 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 63 | 59 62 | fssdm | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 65 | 9 | oif | ⊢ 𝑂 : dom 𝑂 ⟶ ( 𝐺 supp ∅ ) |
| 66 | 65 | ffvelcdmi | ⊢ ( 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 67 | 40 66 | syl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 68 | 64 67 | sseldd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) |
| 69 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) | |
| 70 | 3 68 69 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
| 71 | ontri1 | ⊢ ( ( 𝑋 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) | |
| 72 | 58 70 71 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) |
| 73 | 54 72 | mpbird | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ) |