This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| oemapval.f | |- ( ph -> F e. S ) |
||
| oemapval.g | |- ( ph -> G e. S ) |
||
| oemapvali.r | |- ( ph -> F T G ) |
||
| oemapvali.x | |- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
||
| cantnflem1.o | |- O = OrdIso ( _E , ( G supp (/) ) ) |
||
| Assertion | cantnflem1b | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | oemapval.f | |- ( ph -> F e. S ) |
|
| 6 | oemapval.g | |- ( ph -> G e. S ) |
|
| 7 | oemapvali.r | |- ( ph -> F T G ) |
|
| 8 | oemapvali.x | |- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
|
| 9 | cantnflem1.o | |- O = OrdIso ( _E , ( G supp (/) ) ) |
|
| 10 | simprr | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) C_ u ) |
|
| 11 | 9 | oicl | |- Ord dom O |
| 12 | ovexd | |- ( ph -> ( G supp (/) ) e. _V ) |
|
| 13 | 1 2 3 9 6 | cantnfcl | |- ( ph -> ( _E We ( G supp (/) ) /\ dom O e. _om ) ) |
| 14 | 13 | simpld | |- ( ph -> _E We ( G supp (/) ) ) |
| 15 | 9 | oiiso | |- ( ( ( G supp (/) ) e. _V /\ _E We ( G supp (/) ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
| 16 | 12 14 15 | syl2anc | |- ( ph -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
| 17 | isof1o | |- ( O Isom _E , _E ( dom O , ( G supp (/) ) ) -> O : dom O -1-1-onto-> ( G supp (/) ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> O : dom O -1-1-onto-> ( G supp (/) ) ) |
| 19 | f1ocnv | |- ( O : dom O -1-1-onto-> ( G supp (/) ) -> `' O : ( G supp (/) ) -1-1-onto-> dom O ) |
|
| 20 | f1of | |- ( `' O : ( G supp (/) ) -1-1-onto-> dom O -> `' O : ( G supp (/) ) --> dom O ) |
|
| 21 | 18 19 20 | 3syl | |- ( ph -> `' O : ( G supp (/) ) --> dom O ) |
| 22 | 1 2 3 4 5 6 7 8 | cantnflem1a | |- ( ph -> X e. ( G supp (/) ) ) |
| 23 | 21 22 | ffvelcdmd | |- ( ph -> ( `' O ` X ) e. dom O ) |
| 24 | ordelon | |- ( ( Ord dom O /\ ( `' O ` X ) e. dom O ) -> ( `' O ` X ) e. On ) |
|
| 25 | 11 23 24 | sylancr | |- ( ph -> ( `' O ` X ) e. On ) |
| 26 | 11 | a1i | |- ( ph -> Ord dom O ) |
| 27 | ordelon | |- ( ( Ord dom O /\ suc u e. dom O ) -> suc u e. On ) |
|
| 28 | 26 27 | sylan | |- ( ( ph /\ suc u e. dom O ) -> suc u e. On ) |
| 29 | onsucb | |- ( u e. On <-> suc u e. On ) |
|
| 30 | 28 29 | sylibr | |- ( ( ph /\ suc u e. dom O ) -> u e. On ) |
| 31 | 30 | adantrr | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. On ) |
| 32 | ontri1 | |- ( ( ( `' O ` X ) e. On /\ u e. On ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) |
|
| 33 | 25 31 32 | syl2an2r | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) |
| 34 | 10 33 | mpbid | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. u e. ( `' O ` X ) ) |
| 35 | 16 | adantr | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
| 36 | ordtr | |- ( Ord dom O -> Tr dom O ) |
|
| 37 | 11 36 | mp1i | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> Tr dom O ) |
| 38 | simprl | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> suc u e. dom O ) |
|
| 39 | trsuc | |- ( ( Tr dom O /\ suc u e. dom O ) -> u e. dom O ) |
|
| 40 | 37 38 39 | syl2anc | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. dom O ) |
| 41 | 23 | adantr | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) e. dom O ) |
| 42 | isorel | |- ( ( O Isom _E , _E ( dom O , ( G supp (/) ) ) /\ ( u e. dom O /\ ( `' O ` X ) e. dom O ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) |
|
| 43 | 35 40 41 42 | syl12anc | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) |
| 44 | fvex | |- ( `' O ` X ) e. _V |
|
| 45 | 44 | epeli | |- ( u _E ( `' O ` X ) <-> u e. ( `' O ` X ) ) |
| 46 | fvex | |- ( O ` ( `' O ` X ) ) e. _V |
|
| 47 | 46 | epeli | |- ( ( O ` u ) _E ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) |
| 48 | 43 45 47 | 3bitr3g | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) ) |
| 49 | f1ocnvfv2 | |- ( ( O : dom O -1-1-onto-> ( G supp (/) ) /\ X e. ( G supp (/) ) ) -> ( O ` ( `' O ` X ) ) = X ) |
|
| 50 | 18 22 49 | syl2anc | |- ( ph -> ( O ` ( `' O ` X ) ) = X ) |
| 51 | 50 | adantr | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` ( `' O ` X ) ) = X ) |
| 52 | 51 | eleq2d | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( O ` u ) e. ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. X ) ) |
| 53 | 48 52 | bitrd | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. X ) ) |
| 54 | 34 53 | mtbid | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. ( O ` u ) e. X ) |
| 55 | 1 2 3 4 5 6 7 8 | oemapvali | |- ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 56 | 55 | simp1d | |- ( ph -> X e. B ) |
| 57 | onelon | |- ( ( B e. On /\ X e. B ) -> X e. On ) |
|
| 58 | 3 56 57 | syl2anc | |- ( ph -> X e. On ) |
| 59 | suppssdm | |- ( G supp (/) ) C_ dom G |
|
| 60 | 1 2 3 | cantnfs | |- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 61 | 6 60 | mpbid | |- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 62 | 61 | simpld | |- ( ph -> G : B --> A ) |
| 63 | 59 62 | fssdm | |- ( ph -> ( G supp (/) ) C_ B ) |
| 64 | 63 | adantr | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( G supp (/) ) C_ B ) |
| 65 | 9 | oif | |- O : dom O --> ( G supp (/) ) |
| 66 | 65 | ffvelcdmi | |- ( u e. dom O -> ( O ` u ) e. ( G supp (/) ) ) |
| 67 | 40 66 | syl | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. ( G supp (/) ) ) |
| 68 | 64 67 | sseldd | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. B ) |
| 69 | onelon | |- ( ( B e. On /\ ( O ` u ) e. B ) -> ( O ` u ) e. On ) |
|
| 70 | 3 68 69 | syl2an2r | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. On ) |
| 71 | ontri1 | |- ( ( X e. On /\ ( O ` u ) e. On ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) |
|
| 72 | 58 70 71 | syl2an2r | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) |
| 73 | 54 72 | mpbird | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) |