This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnffval.s | ⊢ 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } | |
| cantnffval.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnffval.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| Assertion | cantnffval | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnffval.s | ⊢ 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } | |
| 2 | cantnffval.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnffval.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oveq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ↑m 𝑦 ) = ( 𝐴 ↑m 𝐵 ) ) | |
| 5 | 4 | rabeqdv | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 6 | 5 1 | eqtr4di | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } = 𝑆 ) |
| 7 | simp1l | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V ) → 𝑥 = 𝐴 ) | |
| 8 | 7 | oveq1d | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) = ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V ) → ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) = ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V ) → ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 11 | 10 | mpoeq3dva | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
| 12 | eqid | ⊢ ∅ = ∅ | |
| 13 | seqomeq12 | ⊢ ( ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
| 15 | 14 | fveq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) |
| 16 | 15 | csbeq2dv | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) = ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) |
| 17 | 6 16 | mpteq12dv | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑓 ∈ { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) = ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| 18 | df-cnf | ⊢ CNF = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( 𝑓 ∈ { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) | |
| 19 | ovex | ⊢ ( 𝐴 ↑m 𝐵 ) ∈ V | |
| 20 | 1 19 | rabex2 | ⊢ 𝑆 ∈ V |
| 21 | 20 | mptex | ⊢ ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ∈ V |
| 22 | 17 18 21 | ovmpoa | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| 23 | 2 3 22 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |