This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1lip1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| c1lip1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| c1lip1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | ||
| c1lip1.dv | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| c1lip1.cn | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| Assertion | c1lip1 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | c1lip1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | c1lip1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 4 | c1lip1.dv | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | c1lip1.cn | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | 6 | ne0ii | ⊢ ℝ ≠ ∅ |
| 8 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) | |
| 9 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 10 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 11 | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 13 | 12 | biimpar | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 14 | 13 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 15 | 8 14 | mpbiri | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 16 | 15 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ∀ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 17 | r19.2z | ⊢ ( ( ℝ ≠ ∅ ∧ ∀ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) | |
| 18 | 7 16 17 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 19 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 20 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 22 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 23 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 24 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 25 | eqid | ⊢ sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) | |
| 26 | 19 20 21 22 23 24 25 | c1liplem1 | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) ) |
| 27 | oveq1 | ⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) | |
| 28 | 27 | breq2d | ⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) ) |
| 30 | 29 | 2ralbidv | ⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) ) |
| 31 | 30 | rspcev | ⊢ ( ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 32 | 26 31 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 33 | breq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 < 𝑏 ↔ 𝑥 < 𝑏 ) ) | |
| 34 | fveq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 35 | 34 | oveq2d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 35 | fveq2d | ⊢ ( 𝑎 = 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 | oveq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑥 ) ) | |
| 38 | 37 | fveq2d | ⊢ ( 𝑎 = 𝑥 → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑥 ) ) ) |
| 39 | 38 | oveq2d | ⊢ ( 𝑎 = 𝑥 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) |
| 40 | 36 39 | breq12d | ⊢ ( 𝑎 = 𝑥 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) ) |
| 41 | 33 40 | imbi12d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝑥 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) ) ) |
| 42 | breq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝑥 < 𝑏 ↔ 𝑥 < 𝑦 ) ) | |
| 43 | fveq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 44 | 43 | fvoveq1d | ⊢ ( 𝑏 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 45 | fvoveq1 | ⊢ ( 𝑏 = 𝑦 → ( abs ‘ ( 𝑏 − 𝑥 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) | |
| 46 | 45 | oveq2d | ⊢ ( 𝑏 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 47 | 44 46 | breq12d | ⊢ ( 𝑏 = 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 48 | 42 47 | imbi12d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) ↔ ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |
| 49 | 41 48 | rspc2v | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |
| 50 | 49 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |
| 51 | pm2.27 | ⊢ ( 𝑥 < 𝑦 → ( ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) | |
| 52 | 51 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 53 | 50 52 | syld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 54 | 0le0 | ⊢ 0 ≤ 0 | |
| 55 | fvres | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 56 | 55 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 57 | cncff | ⊢ ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 58 | 5 57 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 60 | simpl | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 61 | ffvelcdm | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ ) | |
| 62 | 59 60 61 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 63 | 56 62 | eqeltrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 64 | 63 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 65 | 64 | subidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 66 | 65 | abs00bd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ) |
| 67 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 68 | 1 2 67 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 69 | 68 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 70 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 71 | 69 70 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
| 72 | 71 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℂ ) |
| 73 | 72 | subidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 − 𝑥 ) = 0 ) |
| 74 | 73 | abs00bd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑥 − 𝑥 ) ) = 0 ) |
| 75 | 74 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) = ( 𝑘 · 0 ) ) |
| 76 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑘 ∈ ℝ ) | |
| 77 | 76 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑘 ∈ ℂ ) |
| 78 | 77 | mul01d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · 0 ) = 0 ) |
| 79 | 75 78 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) = 0 ) |
| 80 | 66 79 | breq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) ↔ 0 ≤ 0 ) ) |
| 81 | 54 80 | mpbiri | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) ) |
| 82 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 83 | 82 | fvoveq1d | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 84 | fvoveq1 | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( 𝑥 − 𝑥 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) | |
| 85 | 84 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 86 | 83 85 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 87 | 81 86 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 88 | 87 | imp | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 = 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 89 | 88 | a1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 90 | breq1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 < 𝑏 ↔ 𝑦 < 𝑏 ) ) | |
| 91 | fveq2 | ⊢ ( 𝑎 = 𝑦 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 92 | 91 | oveq2d | ⊢ ( 𝑎 = 𝑦 → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 93 | 92 | fveq2d | ⊢ ( 𝑎 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 94 | oveq2 | ⊢ ( 𝑎 = 𝑦 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑦 ) ) | |
| 95 | 94 | fveq2d | ⊢ ( 𝑎 = 𝑦 → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑦 ) ) ) |
| 96 | 95 | oveq2d | ⊢ ( 𝑎 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) |
| 97 | 93 96 | breq12d | ⊢ ( 𝑎 = 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) ) |
| 98 | 90 97 | imbi12d | ⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝑦 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) ) ) |
| 99 | breq2 | ⊢ ( 𝑏 = 𝑥 → ( 𝑦 < 𝑏 ↔ 𝑦 < 𝑥 ) ) | |
| 100 | fveq2 | ⊢ ( 𝑏 = 𝑥 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 101 | 100 | fvoveq1d | ⊢ ( 𝑏 = 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 102 | fvoveq1 | ⊢ ( 𝑏 = 𝑥 → ( abs ‘ ( 𝑏 − 𝑦 ) ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) | |
| 103 | 102 | oveq2d | ⊢ ( 𝑏 = 𝑥 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 104 | 101 103 | breq12d | ⊢ ( 𝑏 = 𝑥 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) |
| 105 | 99 104 | imbi12d | ⊢ ( 𝑏 = 𝑥 → ( ( 𝑦 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) ↔ ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 106 | 98 105 | rspc2v | ⊢ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 107 | 106 | ancoms | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 108 | 107 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 109 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → 𝑦 < 𝑥 ) | |
| 110 | fvres | ⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 111 | 110 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 112 | simpr | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 113 | ffvelcdm | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ ) | |
| 114 | 59 112 113 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 115 | 111 114 | eqeltrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 116 | 115 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 117 | 64 116 | abssubd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 118 | 117 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 119 | 68 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 120 | 119 | sseld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ ) ) |
| 121 | 119 | sseld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → 𝑦 ∈ ℝ ) ) |
| 122 | 120 121 | anim12d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ) |
| 123 | 122 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 124 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 125 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 126 | abssub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) | |
| 127 | 124 125 126 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 128 | 123 127 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 129 | 128 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 130 | 129 | oveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 131 | 118 130 | breq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 132 | 131 | biimpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 133 | 109 132 | embantd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 134 | 108 133 | syld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 135 | lttri4 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) | |
| 136 | 123 135 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) |
| 137 | 53 89 134 136 | mpjao3dan | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 138 | 137 | ralrimdvva | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 139 | 138 | reximdva | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 140 | 32 139 | mpd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 141 | 18 140 2 1 | ltlecasei | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |