This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brcart.1 | ⊢ 𝐴 ∈ V | |
| brcart.2 | ⊢ 𝐵 ∈ V | ||
| brcart.3 | ⊢ 𝐶 ∈ V | ||
| Assertion | brcart | ⊢ ( 〈 𝐴 , 𝐵 〉 Cart 𝐶 ↔ 𝐶 = ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcart.1 | ⊢ 𝐴 ∈ V | |
| 2 | brcart.2 | ⊢ 𝐵 ∈ V | |
| 3 | brcart.3 | ⊢ 𝐶 ∈ V | |
| 4 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 5 | df-cart | ⊢ Cart = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) ) | |
| 6 | 1 2 | opelvv | ⊢ 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) |
| 7 | brxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ( ( V × V ) × V ) 𝐶 ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ∧ 𝐶 ∈ V ) ) | |
| 8 | 6 3 7 | mpbir2an | ⊢ 〈 𝐴 , 𝐵 〉 ( ( V × V ) × V ) 𝐶 |
| 9 | 3anass | ⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 E 𝐴 ∧ 𝑧 E 𝐵 ) ) ) | |
| 10 | 1 | epeli | ⊢ ( 𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
| 11 | 2 | epeli | ⊢ ( 𝑧 E 𝐵 ↔ 𝑧 ∈ 𝐵 ) |
| 12 | 10 11 | anbi12i | ⊢ ( ( 𝑦 E 𝐴 ∧ 𝑧 E 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
| 13 | 12 | anbi2i | ⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 E 𝐴 ∧ 𝑧 E 𝐵 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 14 | 9 13 | bitri | ⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 15 | 14 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 16 | vex | ⊢ 𝑥 ∈ V | |
| 17 | 16 1 2 | brpprod3b | ⊢ ( 𝑥 pprod ( E , E ) 〈 𝐴 , 𝐵 〉 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵 ) ) |
| 18 | elxp | ⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) | |
| 19 | 15 17 18 | 3bitr4ri | ⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ 𝑥 pprod ( E , E ) 〈 𝐴 , 𝐵 〉 ) |
| 20 | 4 3 5 8 19 | brtxpsd3 | ⊢ ( 〈 𝐴 , 𝐵 〉 Cart 𝐶 ↔ 𝐶 = ( 𝐴 × 𝐵 ) ) |