This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brrestrict.1 | |- A e. _V |
|
| brrestrict.2 | |- B e. _V |
||
| brrestrict.3 | |- C e. _V |
||
| Assertion | brrestrict | |- ( <. A , B >. Restrict C <-> C = ( A |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrestrict.1 | |- A e. _V |
|
| 2 | brrestrict.2 | |- B e. _V |
|
| 3 | brrestrict.3 | |- C e. _V |
|
| 4 | opex | |- <. A , B >. e. _V |
|
| 5 | 4 3 | brco | |- ( <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C <-> E. x ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x /\ x Cap C ) ) |
| 6 | 4 | brtxp2 | |- ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x <-> E. a E. b ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) ) |
| 7 | 3anrot | |- ( ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) <-> ( <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b /\ x = <. a , b >. ) ) |
|
| 8 | 1 2 | br1steq | |- ( <. A , B >. 1st a <-> a = A ) |
| 9 | vex | |- b e. _V |
|
| 10 | 4 9 | brco | |- ( <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b <-> E. x ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) ) |
| 11 | 4 | brtxp2 | |- ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x <-> E. a E. b ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) ) |
| 12 | 3anrot | |- ( ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) <-> ( <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b /\ x = <. a , b >. ) ) |
|
| 13 | 1 2 | br2ndeq | |- ( <. A , B >. 2nd a <-> a = B ) |
| 14 | 4 9 | brco | |- ( <. A , B >. ( Range o. 1st ) b <-> E. x ( <. A , B >. 1st x /\ x Range b ) ) |
| 15 | 1 2 | br1steq | |- ( <. A , B >. 1st x <-> x = A ) |
| 16 | 15 | anbi1i | |- ( ( <. A , B >. 1st x /\ x Range b ) <-> ( x = A /\ x Range b ) ) |
| 17 | 16 | exbii | |- ( E. x ( <. A , B >. 1st x /\ x Range b ) <-> E. x ( x = A /\ x Range b ) ) |
| 18 | breq1 | |- ( x = A -> ( x Range b <-> A Range b ) ) |
|
| 19 | 1 18 | ceqsexv | |- ( E. x ( x = A /\ x Range b ) <-> A Range b ) |
| 20 | 17 19 | bitri | |- ( E. x ( <. A , B >. 1st x /\ x Range b ) <-> A Range b ) |
| 21 | 1 9 | brrange | |- ( A Range b <-> b = ran A ) |
| 22 | 14 20 21 | 3bitri | |- ( <. A , B >. ( Range o. 1st ) b <-> b = ran A ) |
| 23 | biid | |- ( x = <. a , b >. <-> x = <. a , b >. ) |
|
| 24 | 13 22 23 | 3anbi123i | |- ( ( <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b /\ x = <. a , b >. ) <-> ( a = B /\ b = ran A /\ x = <. a , b >. ) ) |
| 25 | 12 24 | bitri | |- ( ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) <-> ( a = B /\ b = ran A /\ x = <. a , b >. ) ) |
| 26 | 25 | 2exbii | |- ( E. a E. b ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) <-> E. a E. b ( a = B /\ b = ran A /\ x = <. a , b >. ) ) |
| 27 | 1 | rnex | |- ran A e. _V |
| 28 | opeq1 | |- ( a = B -> <. a , b >. = <. B , b >. ) |
|
| 29 | 28 | eqeq2d | |- ( a = B -> ( x = <. a , b >. <-> x = <. B , b >. ) ) |
| 30 | opeq2 | |- ( b = ran A -> <. B , b >. = <. B , ran A >. ) |
|
| 31 | 30 | eqeq2d | |- ( b = ran A -> ( x = <. B , b >. <-> x = <. B , ran A >. ) ) |
| 32 | 2 27 29 31 | ceqsex2v | |- ( E. a E. b ( a = B /\ b = ran A /\ x = <. a , b >. ) <-> x = <. B , ran A >. ) |
| 33 | 11 26 32 | 3bitri | |- ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x <-> x = <. B , ran A >. ) |
| 34 | 33 | anbi1i | |- ( ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) <-> ( x = <. B , ran A >. /\ x Cart b ) ) |
| 35 | 34 | exbii | |- ( E. x ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) <-> E. x ( x = <. B , ran A >. /\ x Cart b ) ) |
| 36 | opex | |- <. B , ran A >. e. _V |
|
| 37 | breq1 | |- ( x = <. B , ran A >. -> ( x Cart b <-> <. B , ran A >. Cart b ) ) |
|
| 38 | 36 37 | ceqsexv | |- ( E. x ( x = <. B , ran A >. /\ x Cart b ) <-> <. B , ran A >. Cart b ) |
| 39 | 35 38 | bitri | |- ( E. x ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) <-> <. B , ran A >. Cart b ) |
| 40 | 2 27 9 | brcart | |- ( <. B , ran A >. Cart b <-> b = ( B X. ran A ) ) |
| 41 | 10 39 40 | 3bitri | |- ( <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b <-> b = ( B X. ran A ) ) |
| 42 | 8 41 23 | 3anbi123i | |- ( ( <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b /\ x = <. a , b >. ) <-> ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) ) |
| 43 | 7 42 | bitri | |- ( ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) <-> ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) ) |
| 44 | 43 | 2exbii | |- ( E. a E. b ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) <-> E. a E. b ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) ) |
| 45 | 2 27 | xpex | |- ( B X. ran A ) e. _V |
| 46 | opeq1 | |- ( a = A -> <. a , b >. = <. A , b >. ) |
|
| 47 | 46 | eqeq2d | |- ( a = A -> ( x = <. a , b >. <-> x = <. A , b >. ) ) |
| 48 | opeq2 | |- ( b = ( B X. ran A ) -> <. A , b >. = <. A , ( B X. ran A ) >. ) |
|
| 49 | 48 | eqeq2d | |- ( b = ( B X. ran A ) -> ( x = <. A , b >. <-> x = <. A , ( B X. ran A ) >. ) ) |
| 50 | 1 45 47 49 | ceqsex2v | |- ( E. a E. b ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) <-> x = <. A , ( B X. ran A ) >. ) |
| 51 | 6 44 50 | 3bitri | |- ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x <-> x = <. A , ( B X. ran A ) >. ) |
| 52 | 51 | anbi1i | |- ( ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x /\ x Cap C ) <-> ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) ) |
| 53 | 52 | exbii | |- ( E. x ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x /\ x Cap C ) <-> E. x ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) ) |
| 54 | 5 53 | bitri | |- ( <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C <-> E. x ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) ) |
| 55 | opex | |- <. A , ( B X. ran A ) >. e. _V |
|
| 56 | breq1 | |- ( x = <. A , ( B X. ran A ) >. -> ( x Cap C <-> <. A , ( B X. ran A ) >. Cap C ) ) |
|
| 57 | 55 56 | ceqsexv | |- ( E. x ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) <-> <. A , ( B X. ran A ) >. Cap C ) |
| 58 | 1 45 3 | brcap | |- ( <. A , ( B X. ran A ) >. Cap C <-> C = ( A i^i ( B X. ran A ) ) ) |
| 59 | 54 57 58 | 3bitri | |- ( <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C <-> C = ( A i^i ( B X. ran A ) ) ) |
| 60 | df-restrict | |- Restrict = ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) |
|
| 61 | 60 | breqi | |- ( <. A , B >. Restrict C <-> <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C ) |
| 62 | dfres3 | |- ( A |` B ) = ( A i^i ( B X. ran A ) ) |
|
| 63 | 62 | eqeq2i | |- ( C = ( A |` B ) <-> C = ( A i^i ( B X. ran A ) ) ) |
| 64 | 59 61 63 | 3bitr4i | |- ( <. A , B >. Restrict C <-> C = ( A |` B ) ) |