This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfres3 | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) | |
| 2 | eleq1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐴 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) | |
| 3 | vex | ⊢ 𝑧 ∈ V | |
| 4 | 3 | biantru | ⊢ ( 𝑦 ∈ 𝐵 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 5 3 | opelrn | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 → 𝑧 ∈ ran 𝐴 ) |
| 7 | 6 | biantrud | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) |
| 8 | 4 7 | bitr3id | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) |
| 9 | 2 8 | biimtrdi | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
| 10 | 9 | com12 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
| 11 | 10 | pm5.32d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
| 12 | 11 | 2exbidv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
| 13 | elxp | ⊢ ( 𝑥 ∈ ( 𝐵 × V ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) ) | |
| 14 | elxp | ⊢ ( 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) | |
| 15 | 12 13 14 | 3bitr4g | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 × V ) ↔ 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ) ) |
| 16 | 15 | pm5.32i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × V ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ) ) |
| 17 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ) ) | |
| 18 | 16 17 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × V ) ) ↔ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) ) |
| 19 | 18 | ineqri | ⊢ ( 𝐴 ∩ ( 𝐵 × V ) ) = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) |
| 20 | 1 19 | eqtri | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) |