This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014) (Revised by Mario Carneiro, 3-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brtxp2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | brtxp2 | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxp2.1 | ⊢ 𝐴 ∈ V | |
| 2 | txpss3v | ⊢ ( 𝑅 ⊗ 𝑆 ) ⊆ ( V × ( V × V ) ) | |
| 3 | 2 | brel | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ ( V × V ) ) ) |
| 4 | 3 | simprd | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 → 𝐵 ∈ ( V × V ) ) |
| 5 | elvv | ⊢ ( 𝐵 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐵 = 〈 𝑥 , 𝑦 〉 ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 → ∃ 𝑥 ∃ 𝑦 𝐵 = 〈 𝑥 , 𝑦 〉 ) |
| 7 | 6 | pm4.71ri | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ↔ ( ∃ 𝑥 ∃ 𝑦 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ) ) |
| 8 | 19.41vv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ) ) |
| 10 | breq2 | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ↔ 𝐴 ( 𝑅 ⊗ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ) | |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ) ↔ ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ) |
| 12 | 11 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ) |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | vex | ⊢ 𝑦 ∈ V | |
| 15 | 1 13 14 | brtxp | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 〈 𝑥 , 𝑦 〉 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) |
| 16 | 15 | anbi2i | ⊢ ( ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ↔ ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 17 | 3anass | ⊢ ( ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ↔ ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) | |
| 18 | 16 17 | bitr4i | ⊢ ( ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ↔ ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) |
| 19 | 18 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 ( 𝑅 ⊗ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) |
| 20 | 9 12 19 | 3bitri | ⊢ ( 𝐴 ( 𝑅 ⊗ 𝑆 ) 𝐵 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐵 = 〈 𝑥 , 𝑦 〉 ∧ 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) |