This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brcap.1 | ⊢ 𝐴 ∈ V | |
| brcap.2 | ⊢ 𝐵 ∈ V | ||
| brcap.3 | ⊢ 𝐶 ∈ V | ||
| Assertion | brcap | ⊢ ( 〈 𝐴 , 𝐵 〉 Cap 𝐶 ↔ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcap.1 | ⊢ 𝐴 ∈ V | |
| 2 | brcap.2 | ⊢ 𝐵 ∈ V | |
| 3 | brcap.3 | ⊢ 𝐶 ∈ V | |
| 4 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 5 | df-cap | ⊢ Cap = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( ( ( ◡ 1st ∘ E ) ∩ ( ◡ 2nd ∘ E ) ) ⊗ V ) ) ) | |
| 6 | 1 2 | opelvv | ⊢ 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) |
| 7 | brxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ( ( V × V ) × V ) 𝐶 ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ∧ 𝐶 ∈ V ) ) | |
| 8 | 6 3 7 | mpbir2an | ⊢ 〈 𝐴 , 𝐵 〉 ( ( V × V ) × V ) 𝐶 |
| 9 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | 10 4 | brcnv | ⊢ ( 𝑦 ◡ 1st 〈 𝐴 , 𝐵 〉 ↔ 〈 𝐴 , 𝐵 〉 1st 𝑦 ) |
| 12 | 1 2 | br1steq | ⊢ ( 〈 𝐴 , 𝐵 〉 1st 𝑦 ↔ 𝑦 = 𝐴 ) |
| 13 | 11 12 | bitri | ⊢ ( 𝑦 ◡ 1st 〈 𝐴 , 𝐵 〉 ↔ 𝑦 = 𝐴 ) |
| 14 | 9 13 | anbi12ci | ⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 ◡ 1st 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 ◡ 1st 〈 𝐴 , 𝐵 〉 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) |
| 16 | vex | ⊢ 𝑥 ∈ V | |
| 17 | 16 4 | brco | ⊢ ( 𝑥 ( ◡ 1st ∘ E ) 〈 𝐴 , 𝐵 〉 ↔ ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 ◡ 1st 〈 𝐴 , 𝐵 〉 ) ) |
| 18 | 1 | clel3 | ⊢ ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) |
| 19 | 15 17 18 | 3bitr4i | ⊢ ( 𝑥 ( ◡ 1st ∘ E ) 〈 𝐴 , 𝐵 〉 ↔ 𝑥 ∈ 𝐴 ) |
| 20 | 10 4 | brcnv | ⊢ ( 𝑦 ◡ 2nd 〈 𝐴 , 𝐵 〉 ↔ 〈 𝐴 , 𝐵 〉 2nd 𝑦 ) |
| 21 | 1 2 | br2ndeq | ⊢ ( 〈 𝐴 , 𝐵 〉 2nd 𝑦 ↔ 𝑦 = 𝐵 ) |
| 22 | 20 21 | bitri | ⊢ ( 𝑦 ◡ 2nd 〈 𝐴 , 𝐵 〉 ↔ 𝑦 = 𝐵 ) |
| 23 | 9 22 | anbi12ci | ⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 ◡ 2nd 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) |
| 24 | 23 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 ◡ 2nd 〈 𝐴 , 𝐵 〉 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) |
| 25 | 16 4 | brco | ⊢ ( 𝑥 ( ◡ 2nd ∘ E ) 〈 𝐴 , 𝐵 〉 ↔ ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 ◡ 2nd 〈 𝐴 , 𝐵 〉 ) ) |
| 26 | 2 | clel3 | ⊢ ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) |
| 27 | 24 25 26 | 3bitr4i | ⊢ ( 𝑥 ( ◡ 2nd ∘ E ) 〈 𝐴 , 𝐵 〉 ↔ 𝑥 ∈ 𝐵 ) |
| 28 | 19 27 | anbi12i | ⊢ ( ( 𝑥 ( ◡ 1st ∘ E ) 〈 𝐴 , 𝐵 〉 ∧ 𝑥 ( ◡ 2nd ∘ E ) 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 29 | brin | ⊢ ( 𝑥 ( ( ◡ 1st ∘ E ) ∩ ( ◡ 2nd ∘ E ) ) 〈 𝐴 , 𝐵 〉 ↔ ( 𝑥 ( ◡ 1st ∘ E ) 〈 𝐴 , 𝐵 〉 ∧ 𝑥 ( ◡ 2nd ∘ E ) 〈 𝐴 , 𝐵 〉 ) ) | |
| 30 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 31 | 28 29 30 | 3bitr4ri | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑥 ( ( ◡ 1st ∘ E ) ∩ ( ◡ 2nd ∘ E ) ) 〈 𝐴 , 𝐵 〉 ) |
| 32 | 4 3 5 8 31 | brtxpsd3 | ⊢ ( 〈 𝐴 , 𝐵 〉 Cap 𝐶 ↔ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) |