This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bezout . (Contributed by Mario Carneiro, 22-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bezout.1 | ⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } | |
| bezout.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| bezout.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| bezout.2 | ⊢ 𝐺 = inf ( 𝑀 , ℝ , < ) | ||
| bezout.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | ||
| Assertion | bezoutlem4 | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.1 | ⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } | |
| 2 | bezout.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 3 | bezout.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 4 | bezout.2 | ⊢ 𝐺 = inf ( 𝑀 , ℝ , < ) | |
| 5 | bezout.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 6 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 7 | 2 3 6 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 8 | 7 | simpld | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 9 | 2 3 | gcdcld | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 10 | 9 | nn0zd | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 11 | divides | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) | |
| 12 | 10 2 11 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
| 13 | 8 12 | mpbid | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) |
| 14 | 7 | simprd | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 15 | divides | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) | |
| 16 | 10 3 15 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
| 17 | 14 16 | mpbid | ⊢ ( 𝜑 → ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) |
| 18 | reeanv | ⊢ ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℤ ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ↔ ( ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) | |
| 19 | 1 2 3 4 5 | bezoutlem2 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑀 ) |
| 20 | oveq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑢 ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) |
| 22 | 21 | eqeq2d | ⊢ ( 𝑥 = 𝑢 → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 𝑣 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 25 | 24 | eqeq2d | ⊢ ( 𝑦 = 𝑣 → ( 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 26 | 22 25 | cbvrex2vw | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 27 | eqeq1 | ⊢ ( 𝑧 = 𝐺 → ( 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ↔ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) | |
| 28 | 27 | 2rexbidv | ⊢ ( 𝑧 = 𝐺 → ( ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 29 | 26 28 | bitrid | ⊢ ( 𝑧 = 𝐺 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 30 | 29 1 | elrab2 | ⊢ ( 𝐺 ∈ 𝑀 ↔ ( 𝐺 ∈ ℕ ∧ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 31 | 19 30 | sylib | ⊢ ( 𝜑 → ( 𝐺 ∈ ℕ ∧ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 32 | 31 | simprd | ⊢ ( 𝜑 → ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 33 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑠 ∈ ℤ ) | |
| 34 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑢 ∈ ℤ ) | |
| 35 | 33 34 | zmulcld | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑠 · 𝑢 ) ∈ ℤ ) |
| 36 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑡 ∈ ℤ ) | |
| 37 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑣 ∈ ℤ ) | |
| 38 | 36 37 | zmulcld | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑡 · 𝑣 ) ∈ ℤ ) |
| 39 | 35 38 | zaddcld | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) ∈ ℤ ) |
| 40 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 41 | dvdsmul2 | ⊢ ( ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) · ( 𝐴 gcd 𝐵 ) ) ) | |
| 42 | 39 40 41 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) · ( 𝐴 gcd 𝐵 ) ) ) |
| 43 | 35 | zcnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑠 · 𝑢 ) ∈ ℂ ) |
| 44 | 40 | zcnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 45 | 38 | zcnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑡 · 𝑣 ) ∈ ℂ ) |
| 46 | 33 | zcnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑠 ∈ ℂ ) |
| 47 | 34 | zcnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑢 ∈ ℂ ) |
| 48 | 46 47 44 | mul32d | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( 𝑠 · 𝑢 ) · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) ) |
| 49 | 36 | zcnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑡 ∈ ℂ ) |
| 50 | 37 | zcnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑣 ∈ ℂ ) |
| 51 | 49 50 44 | mul32d | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( 𝑡 · 𝑣 ) · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) |
| 52 | 48 51 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( ( 𝑠 · 𝑢 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑡 · 𝑣 ) · ( 𝐴 gcd 𝐵 ) ) ) = ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ) |
| 53 | 43 44 45 52 | joinlmuladdmuld | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) · ( 𝐴 gcd 𝐵 ) ) = ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ) |
| 54 | 42 53 | breqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ) |
| 55 | oveq1 | ⊢ ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) = ( 𝐴 · 𝑢 ) ) | |
| 56 | oveq1 | ⊢ ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) = ( 𝐵 · 𝑣 ) ) | |
| 57 | 55 56 | oveqan12d | ⊢ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 58 | 57 | breq2d | ⊢ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ↔ ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 59 | 54 58 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 60 | breq2 | ⊢ ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ↔ ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) | |
| 61 | 60 | imbi2d | ⊢ ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ↔ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) ) |
| 62 | 59 61 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) |
| 63 | 62 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) ) |
| 64 | 63 | com23 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) → ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) ) |
| 65 | 64 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) ) |
| 66 | 32 65 | mpd | ⊢ ( 𝜑 → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) |
| 67 | 66 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℤ ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) |
| 68 | 18 67 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) |
| 69 | 13 17 68 | mp2and | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) |
| 70 | 31 | simpld | ⊢ ( 𝜑 → 𝐺 ∈ ℕ ) |
| 71 | dvdsle | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐺 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐺 → ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ) ) | |
| 72 | 10 70 71 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐺 → ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ) ) |
| 73 | 69 72 | mpd | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ) |
| 74 | breq2 | ⊢ ( 𝐴 = 0 → ( 𝐺 ∥ 𝐴 ↔ 𝐺 ∥ 0 ) ) | |
| 75 | 1 2 3 | bezoutlem1 | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |
| 76 | 1 2 3 4 5 | bezoutlem3 | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ∈ 𝑀 → 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) |
| 77 | 75 76 | syld | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) |
| 78 | 70 | nnzd | ⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 79 | dvdsabsb | ⊢ ( ( 𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐺 ∥ 𝐴 ↔ 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) | |
| 80 | 78 2 79 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∥ 𝐴 ↔ 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) |
| 81 | 77 80 | sylibrd | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → 𝐺 ∥ 𝐴 ) ) |
| 82 | 81 | imp | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐺 ∥ 𝐴 ) |
| 83 | dvds0 | ⊢ ( 𝐺 ∈ ℤ → 𝐺 ∥ 0 ) | |
| 84 | 78 83 | syl | ⊢ ( 𝜑 → 𝐺 ∥ 0 ) |
| 85 | 74 82 84 | pm2.61ne | ⊢ ( 𝜑 → 𝐺 ∥ 𝐴 ) |
| 86 | breq2 | ⊢ ( 𝐵 = 0 → ( 𝐺 ∥ 𝐵 ↔ 𝐺 ∥ 0 ) ) | |
| 87 | eqid | ⊢ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } | |
| 88 | 87 3 2 | bezoutlem1 | ⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
| 89 | rexcom | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) | |
| 90 | 2 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 91 | 90 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
| 92 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 93 | 92 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑥 ∈ ℂ ) |
| 94 | 91 93 | mulcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 95 | 3 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 96 | 95 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
| 97 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 98 | 97 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑦 ∈ ℂ ) |
| 99 | 96 98 | mulcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐵 · 𝑦 ) ∈ ℂ ) |
| 100 | 94 99 | addcomd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) |
| 101 | 100 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 102 | 101 | 2rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 103 | 89 102 | bitrid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 104 | 103 | rabbidv | ⊢ ( 𝜑 → { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
| 105 | 1 104 | eqtrid | ⊢ ( 𝜑 → 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
| 106 | 105 | eleq2d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ∈ 𝑀 ↔ ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
| 107 | 88 106 | sylibrd | ⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ 𝑀 ) ) |
| 108 | 1 2 3 4 5 | bezoutlem3 | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ∈ 𝑀 → 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) |
| 109 | 107 108 | syld | ⊢ ( 𝜑 → ( 𝐵 ≠ 0 → 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) |
| 110 | dvdsabsb | ⊢ ( ( 𝐺 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐺 ∥ 𝐵 ↔ 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) | |
| 111 | 78 3 110 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∥ 𝐵 ↔ 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) |
| 112 | 109 111 | sylibrd | ⊢ ( 𝜑 → ( 𝐵 ≠ 0 → 𝐺 ∥ 𝐵 ) ) |
| 113 | 112 | imp | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → 𝐺 ∥ 𝐵 ) |
| 114 | 86 113 84 | pm2.61ne | ⊢ ( 𝜑 → 𝐺 ∥ 𝐵 ) |
| 115 | dvdslegcd | ⊢ ( ( ( 𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 ∥ 𝐴 ∧ 𝐺 ∥ 𝐵 ) → 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) ) | |
| 116 | 78 2 3 5 115 | syl31anc | ⊢ ( 𝜑 → ( ( 𝐺 ∥ 𝐴 ∧ 𝐺 ∥ 𝐵 ) → 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) ) |
| 117 | 85 114 116 | mp2and | ⊢ ( 𝜑 → 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) |
| 118 | 9 | nn0red | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
| 119 | 70 | nnred | ⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
| 120 | 118 119 | letri3d | ⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) = 𝐺 ↔ ( ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ∧ 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) ) ) |
| 121 | 73 117 120 | mpbir2and | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 𝐺 ) |
| 122 | 121 19 | eqeltrd | ⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ 𝑀 ) |