This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014) ( Revised by AV, 30-Sep-2020.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bezout.1 | ⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } | |
| bezout.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| bezout.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| bezout.2 | ⊢ 𝐺 = inf ( 𝑀 , ℝ , < ) | ||
| bezout.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | ||
| Assertion | bezoutlem2 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.1 | ⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } | |
| 2 | bezout.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 3 | bezout.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 4 | bezout.2 | ⊢ 𝐺 = inf ( 𝑀 , ℝ , < ) | |
| 5 | bezout.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 6 | 1 | ssrab3 | ⊢ 𝑀 ⊆ ℕ |
| 7 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 8 | 6 7 | sseqtri | ⊢ 𝑀 ⊆ ( ℤ≥ ‘ 1 ) |
| 9 | 1 2 3 | bezoutlem1 | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |
| 10 | ne0i | ⊢ ( ( abs ‘ 𝐴 ) ∈ 𝑀 → 𝑀 ≠ ∅ ) | |
| 11 | 9 10 | syl6 | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → 𝑀 ≠ ∅ ) ) |
| 12 | eqid | ⊢ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } | |
| 13 | 12 3 2 | bezoutlem1 | ⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
| 14 | rexcom | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) | |
| 15 | 2 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
| 17 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 18 | 17 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑥 ∈ ℂ ) |
| 19 | 16 18 | mulcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 20 | 3 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
| 22 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 23 | 22 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑦 ∈ ℂ ) |
| 24 | 21 23 | mulcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐵 · 𝑦 ) ∈ ℂ ) |
| 25 | 19 24 | addcomd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) |
| 26 | 25 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 27 | 26 | 2rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 28 | 14 27 | bitrid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 29 | 28 | rabbidv | ⊢ ( 𝜑 → { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
| 30 | 1 29 | eqtrid | ⊢ ( 𝜑 → 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
| 31 | 30 | eleq2d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ∈ 𝑀 ↔ ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
| 32 | 13 31 | sylibrd | ⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ 𝑀 ) ) |
| 33 | ne0i | ⊢ ( ( abs ‘ 𝐵 ) ∈ 𝑀 → 𝑀 ≠ ∅ ) | |
| 34 | 32 33 | syl6 | ⊢ ( 𝜑 → ( 𝐵 ≠ 0 → 𝑀 ≠ ∅ ) ) |
| 35 | neorian | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 36 | 5 35 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) |
| 37 | 11 34 36 | mpjaod | ⊢ ( 𝜑 → 𝑀 ≠ ∅ ) |
| 38 | infssuzcl | ⊢ ( ( 𝑀 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ≠ ∅ ) → inf ( 𝑀 , ℝ , < ) ∈ 𝑀 ) | |
| 39 | 8 37 38 | sylancr | ⊢ ( 𝜑 → inf ( 𝑀 , ℝ , < ) ∈ 𝑀 ) |
| 40 | 4 39 | eqeltrid | ⊢ ( 𝜑 → 𝐺 ∈ 𝑀 ) |