This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bezout.1 | ⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } | |
| bezout.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| bezout.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| Assertion | bezoutlem1 | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.1 | ⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } | |
| 2 | bezout.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 3 | bezout.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 4 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( abs ‘ 𝑧 ) = ( abs ‘ 𝐴 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 · 𝑥 ) = ( 𝐴 · 𝑥 ) ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑧 = 𝐴 → ( ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) ) |
| 8 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
| 9 | 1z | ⊢ 1 ∈ ℤ | |
| 10 | ax-1rid | ⊢ ( 𝑧 ∈ ℝ → ( 𝑧 · 1 ) = 𝑧 ) | |
| 11 | 10 | eqcomd | ⊢ ( 𝑧 ∈ ℝ → 𝑧 = ( 𝑧 · 1 ) ) |
| 12 | oveq2 | ⊢ ( 𝑥 = 1 → ( 𝑧 · 𝑥 ) = ( 𝑧 · 1 ) ) | |
| 13 | 12 | rspceeqv | ⊢ ( ( 1 ∈ ℤ ∧ 𝑧 = ( 𝑧 · 1 ) ) → ∃ 𝑥 ∈ ℤ 𝑧 = ( 𝑧 · 𝑥 ) ) |
| 14 | 9 11 13 | sylancr | ⊢ ( 𝑧 ∈ ℝ → ∃ 𝑥 ∈ ℤ 𝑧 = ( 𝑧 · 𝑥 ) ) |
| 15 | eqeq1 | ⊢ ( ( abs ‘ 𝑧 ) = 𝑧 → ( ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ 𝑧 = ( 𝑧 · 𝑥 ) ) ) | |
| 16 | 15 | rexbidv | ⊢ ( ( abs ‘ 𝑧 ) = 𝑧 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 𝑧 = ( 𝑧 · 𝑥 ) ) ) |
| 17 | 14 16 | syl5ibrcom | ⊢ ( 𝑧 ∈ ℝ → ( ( abs ‘ 𝑧 ) = 𝑧 → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) ) |
| 18 | neg1z | ⊢ - 1 ∈ ℤ | |
| 19 | recn | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) | |
| 20 | 19 | mulm1d | ⊢ ( 𝑧 ∈ ℝ → ( - 1 · 𝑧 ) = - 𝑧 ) |
| 21 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 22 | mulcom | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( - 1 · 𝑧 ) = ( 𝑧 · - 1 ) ) | |
| 23 | 21 19 22 | sylancr | ⊢ ( 𝑧 ∈ ℝ → ( - 1 · 𝑧 ) = ( 𝑧 · - 1 ) ) |
| 24 | 20 23 | eqtr3d | ⊢ ( 𝑧 ∈ ℝ → - 𝑧 = ( 𝑧 · - 1 ) ) |
| 25 | oveq2 | ⊢ ( 𝑥 = - 1 → ( 𝑧 · 𝑥 ) = ( 𝑧 · - 1 ) ) | |
| 26 | 25 | rspceeqv | ⊢ ( ( - 1 ∈ ℤ ∧ - 𝑧 = ( 𝑧 · - 1 ) ) → ∃ 𝑥 ∈ ℤ - 𝑧 = ( 𝑧 · 𝑥 ) ) |
| 27 | 18 24 26 | sylancr | ⊢ ( 𝑧 ∈ ℝ → ∃ 𝑥 ∈ ℤ - 𝑧 = ( 𝑧 · 𝑥 ) ) |
| 28 | eqeq1 | ⊢ ( ( abs ‘ 𝑧 ) = - 𝑧 → ( ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ - 𝑧 = ( 𝑧 · 𝑥 ) ) ) | |
| 29 | 28 | rexbidv | ⊢ ( ( abs ‘ 𝑧 ) = - 𝑧 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ - 𝑧 = ( 𝑧 · 𝑥 ) ) ) |
| 30 | 27 29 | syl5ibrcom | ⊢ ( 𝑧 ∈ ℝ → ( ( abs ‘ 𝑧 ) = - 𝑧 → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) ) |
| 31 | absor | ⊢ ( 𝑧 ∈ ℝ → ( ( abs ‘ 𝑧 ) = 𝑧 ∨ ( abs ‘ 𝑧 ) = - 𝑧 ) ) | |
| 32 | 17 30 31 | mpjaod | ⊢ ( 𝑧 ∈ ℝ → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) |
| 33 | 8 32 | syl | ⊢ ( 𝑧 ∈ ℤ → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) |
| 34 | 7 33 | vtoclga | ⊢ ( 𝐴 ∈ ℤ → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) |
| 35 | 2 34 | syl | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) |
| 36 | 3 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 38 | 37 | mul01d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐵 · 0 ) = 0 ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) = ( ( 𝐴 · 𝑥 ) + 0 ) ) |
| 40 | 2 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 41 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 42 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) | |
| 43 | 40 41 42 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 44 | 43 | addridd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 · 𝑥 ) + 0 ) = ( 𝐴 · 𝑥 ) ) |
| 45 | 39 44 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) = ( 𝐴 · 𝑥 ) ) |
| 46 | 45 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) ↔ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) ) |
| 47 | 0z | ⊢ 0 ∈ ℤ | |
| 48 | oveq2 | ⊢ ( 𝑦 = 0 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 0 ) ) | |
| 49 | 48 | oveq2d | ⊢ ( 𝑦 = 0 → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) ) |
| 50 | 49 | rspceeqv | ⊢ ( ( 0 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) ) → ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| 51 | 47 50 | mpan | ⊢ ( ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) → ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| 52 | 46 51 | biimtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) → ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 53 | 52 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 54 | 35 53 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| 55 | nnabscl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℕ ) | |
| 56 | 55 | ex | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ ℕ ) ) |
| 57 | 2 56 | syl | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ ℕ ) ) |
| 58 | eqeq1 | ⊢ ( 𝑧 = ( abs ‘ 𝐴 ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) | |
| 59 | 58 | 2rexbidv | ⊢ ( 𝑧 = ( abs ‘ 𝐴 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 60 | 59 1 | elrab2 | ⊢ ( ( abs ‘ 𝐴 ) ∈ 𝑀 ↔ ( ( abs ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 61 | 60 | simplbi2com | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) → ( ( abs ‘ 𝐴 ) ∈ ℕ → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |
| 62 | 54 57 61 | sylsyld | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |