This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alexsubALT . Every subset of a base which has no finite subcover is a subset of a maximal such collection. (Contributed by Jeff Hankins, 27-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | alexsubALTlem2 | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ∃ 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssel | ⊢ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) ) | |
| 3 | elun | ⊢ ( 𝑤 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ↔ ( 𝑤 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∨ 𝑤 ∈ { ∅ } ) ) | |
| 4 | sseq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ 𝑤 ) ) | |
| 5 | pweq | ⊢ ( 𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤 ) | |
| 6 | 5 | ineq1d | ⊢ ( 𝑧 = 𝑤 → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 𝑤 ∩ Fin ) ) |
| 7 | 6 | raleqdv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ↔ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 8 | 4 7 | anbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ↔ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 9 | 8 | elrab | ⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ↔ ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 10 | velsn | ⊢ ( 𝑤 ∈ { ∅ } ↔ 𝑤 = ∅ ) | |
| 11 | 9 10 | orbi12i | ⊢ ( ( 𝑤 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∨ 𝑤 ∈ { ∅ } ) ↔ ( ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ∨ 𝑤 = ∅ ) ) |
| 12 | 3 11 | bitri | ⊢ ( 𝑤 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ↔ ( ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ∨ 𝑤 = ∅ ) ) |
| 13 | elpwi | ⊢ ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) → 𝑤 ⊆ ( fi ‘ 𝑥 ) ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) → 𝑤 ⊆ ( fi ‘ 𝑥 ) ) |
| 15 | 0ss | ⊢ ∅ ⊆ ( fi ‘ 𝑥 ) | |
| 16 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ ( fi ‘ 𝑥 ) ↔ ∅ ⊆ ( fi ‘ 𝑥 ) ) ) | |
| 17 | 15 16 | mpbiri | ⊢ ( 𝑤 = ∅ → 𝑤 ⊆ ( fi ‘ 𝑥 ) ) |
| 18 | 14 17 | jaoi | ⊢ ( ( ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ∨ 𝑤 = ∅ ) → 𝑤 ⊆ ( fi ‘ 𝑥 ) ) |
| 19 | 12 18 | sylbi | ⊢ ( 𝑤 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → 𝑤 ⊆ ( fi ‘ 𝑥 ) ) |
| 20 | 2 19 | syl6 | ⊢ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( 𝑤 ∈ 𝑦 → 𝑤 ⊆ ( fi ‘ 𝑥 ) ) ) |
| 21 | 20 | ralrimiv | ⊢ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ∀ 𝑤 ∈ 𝑦 𝑤 ⊆ ( fi ‘ 𝑥 ) ) |
| 22 | unissb | ⊢ ( ∪ 𝑦 ⊆ ( fi ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ 𝑦 𝑤 ⊆ ( fi ‘ 𝑥 ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ∪ 𝑦 ⊆ ( fi ‘ 𝑥 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ⊆ ( fi ‘ 𝑥 ) ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ∪ 𝑦 ⊆ ( fi ‘ 𝑥 ) ) |
| 26 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 27 | 26 | elpw | ⊢ ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ↔ ∪ 𝑦 ⊆ ( fi ‘ 𝑥 ) ) |
| 28 | 25 27 | sylibr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ) |
| 29 | uni0b | ⊢ ( ∪ 𝑦 = ∅ ↔ 𝑦 ⊆ { ∅ } ) | |
| 30 | 29 | notbii | ⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ¬ 𝑦 ⊆ { ∅ } ) |
| 31 | disjssun | ⊢ ( ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) = ∅ → ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ↔ 𝑦 ⊆ { ∅ } ) ) | |
| 32 | 31 | biimpcd | ⊢ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) = ∅ → 𝑦 ⊆ { ∅ } ) ) |
| 33 | 32 | necon3bd | ⊢ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( ¬ 𝑦 ⊆ { ∅ } → ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ≠ ∅ ) ) |
| 34 | n0 | ⊢ ( ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ) | |
| 35 | elin | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ) | |
| 36 | 9 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ↔ ( 𝑤 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ) |
| 37 | 35 36 | bitri | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ↔ ( 𝑤 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ) |
| 38 | simprrl | ⊢ ( ( 𝑤 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → 𝑎 ⊆ 𝑤 ) | |
| 39 | simpl | ⊢ ( ( 𝑤 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → 𝑤 ∈ 𝑦 ) | |
| 40 | ssuni | ⊢ ( ( 𝑎 ⊆ 𝑤 ∧ 𝑤 ∈ 𝑦 ) → 𝑎 ⊆ ∪ 𝑦 ) | |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝑤 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → 𝑎 ⊆ ∪ 𝑦 ) |
| 42 | 37 41 | sylbi | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) → 𝑎 ⊆ ∪ 𝑦 ) |
| 43 | 42 | exlimiv | ⊢ ( ∃ 𝑤 𝑤 ∈ ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) → 𝑎 ⊆ ∪ 𝑦 ) |
| 44 | 34 43 | sylbi | ⊢ ( ( 𝑦 ∩ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ≠ ∅ → 𝑎 ⊆ ∪ 𝑦 ) |
| 45 | 33 44 | syl6 | ⊢ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( ¬ 𝑦 ⊆ { ∅ } → 𝑎 ⊆ ∪ 𝑦 ) ) |
| 46 | 45 | ad2antrl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) → ( ¬ 𝑦 ⊆ { ∅ } → 𝑎 ⊆ ∪ 𝑦 ) ) |
| 47 | 30 46 | biimtrid | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) → ( ¬ ∪ 𝑦 = ∅ → 𝑎 ⊆ ∪ 𝑦 ) ) |
| 48 | 47 | imp | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → 𝑎 ⊆ ∪ 𝑦 ) |
| 49 | elfpw | ⊢ ( 𝑛 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ↔ ( 𝑛 ⊆ ∪ 𝑦 ∧ 𝑛 ∈ Fin ) ) | |
| 50 | unieq | ⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∪ ∅ ) | |
| 51 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 52 | 50 51 | eqtrdi | ⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∅ ) |
| 53 | 52 | necon3bi | ⊢ ( ¬ ∪ 𝑦 = ∅ → 𝑦 ≠ ∅ ) |
| 54 | 53 | adantr | ⊢ ( ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) → 𝑦 ≠ ∅ ) |
| 55 | 54 | ad2antrl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ∧ 𝑛 ⊆ ∪ 𝑦 ) ) → 𝑦 ≠ ∅ ) |
| 56 | simplrr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ∧ 𝑛 ⊆ ∪ 𝑦 ) ) → [⊊] Or 𝑦 ) | |
| 57 | simprlr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ∧ 𝑛 ⊆ ∪ 𝑦 ) ) → 𝑛 ∈ Fin ) | |
| 58 | simprr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ∧ 𝑛 ⊆ ∪ 𝑦 ) ) → 𝑛 ⊆ ∪ 𝑦 ) | |
| 59 | finsschain | ⊢ ( ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) ∧ ( 𝑛 ∈ Fin ∧ 𝑛 ⊆ ∪ 𝑦 ) ) → ∃ 𝑤 ∈ 𝑦 𝑛 ⊆ 𝑤 ) | |
| 60 | 55 56 57 58 59 | syl22anc | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ∧ 𝑛 ⊆ ∪ 𝑦 ) ) → ∃ 𝑤 ∈ 𝑦 𝑛 ⊆ 𝑤 ) |
| 61 | 60 | expr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ) → ( 𝑛 ⊆ ∪ 𝑦 → ∃ 𝑤 ∈ 𝑦 𝑛 ⊆ 𝑤 ) ) |
| 62 | 0elpw | ⊢ ∅ ∈ 𝒫 𝑎 | |
| 63 | 0fi | ⊢ ∅ ∈ Fin | |
| 64 | 62 63 | elini | ⊢ ∅ ∈ ( 𝒫 𝑎 ∩ Fin ) |
| 65 | unieq | ⊢ ( 𝑏 = ∅ → ∪ 𝑏 = ∪ ∅ ) | |
| 66 | 65 | eqeq2d | ⊢ ( 𝑏 = ∅ → ( 𝑋 = ∪ 𝑏 ↔ 𝑋 = ∪ ∅ ) ) |
| 67 | 66 | notbid | ⊢ ( 𝑏 = ∅ → ( ¬ 𝑋 = ∪ 𝑏 ↔ ¬ 𝑋 = ∪ ∅ ) ) |
| 68 | 67 | rspccv | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( ∅ ∈ ( 𝒫 𝑎 ∩ Fin ) → ¬ 𝑋 = ∪ ∅ ) ) |
| 69 | 64 68 | mpi | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ ∅ ) |
| 70 | velpw | ⊢ ( 𝑛 ∈ 𝒫 𝑤 ↔ 𝑛 ⊆ 𝑤 ) | |
| 71 | elin | ⊢ ( 𝑛 ∈ ( 𝒫 𝑤 ∩ Fin ) ↔ ( 𝑛 ∈ 𝒫 𝑤 ∧ 𝑛 ∈ Fin ) ) | |
| 72 | unieq | ⊢ ( 𝑏 = 𝑛 → ∪ 𝑏 = ∪ 𝑛 ) | |
| 73 | 72 | eqeq2d | ⊢ ( 𝑏 = 𝑛 → ( 𝑋 = ∪ 𝑏 ↔ 𝑋 = ∪ 𝑛 ) ) |
| 74 | 73 | notbid | ⊢ ( 𝑏 = 𝑛 → ( ¬ 𝑋 = ∪ 𝑏 ↔ ¬ 𝑋 = ∪ 𝑛 ) ) |
| 75 | 74 | rspccv | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑛 ∈ ( 𝒫 𝑤 ∩ Fin ) → ¬ 𝑋 = ∪ 𝑛 ) ) |
| 76 | 71 75 | biimtrrid | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( ( 𝑛 ∈ 𝒫 𝑤 ∧ 𝑛 ∈ Fin ) → ¬ 𝑋 = ∪ 𝑛 ) ) |
| 77 | 76 | expd | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑛 ∈ 𝒫 𝑤 → ( 𝑛 ∈ Fin → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 78 | 70 77 | biimtrrid | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑛 ⊆ 𝑤 → ( 𝑛 ∈ Fin → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 79 | 78 | com23 | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 80 | 79 | ad2antll | ⊢ ( ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 81 | 80 | a1i | ⊢ ( ¬ 𝑋 = ∪ ∅ → ( ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 82 | sseq2 | ⊢ ( 𝑤 = ∅ → ( 𝑛 ⊆ 𝑤 ↔ 𝑛 ⊆ ∅ ) ) | |
| 83 | ss0 | ⊢ ( 𝑛 ⊆ ∅ → 𝑛 = ∅ ) | |
| 84 | 82 83 | biimtrdi | ⊢ ( 𝑤 = ∅ → ( 𝑛 ⊆ 𝑤 → 𝑛 = ∅ ) ) |
| 85 | unieq | ⊢ ( 𝑛 = ∅ → ∪ 𝑛 = ∪ ∅ ) | |
| 86 | 85 | eqeq2d | ⊢ ( 𝑛 = ∅ → ( 𝑋 = ∪ 𝑛 ↔ 𝑋 = ∪ ∅ ) ) |
| 87 | 86 | notbid | ⊢ ( 𝑛 = ∅ → ( ¬ 𝑋 = ∪ 𝑛 ↔ ¬ 𝑋 = ∪ ∅ ) ) |
| 88 | 87 | biimprcd | ⊢ ( ¬ 𝑋 = ∪ ∅ → ( 𝑛 = ∅ → ¬ 𝑋 = ∪ 𝑛 ) ) |
| 89 | 88 | a1dd | ⊢ ( ¬ 𝑋 = ∪ ∅ → ( 𝑛 = ∅ → ( 𝑛 ∈ Fin → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 90 | 84 89 | syl9r | ⊢ ( ¬ 𝑋 = ∪ ∅ → ( 𝑤 = ∅ → ( 𝑛 ⊆ 𝑤 → ( 𝑛 ∈ Fin → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 91 | 90 | com34 | ⊢ ( ¬ 𝑋 = ∪ ∅ → ( 𝑤 = ∅ → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 92 | 81 91 | jaod | ⊢ ( ¬ 𝑋 = ∪ ∅ → ( ( ( 𝑤 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑤 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑤 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ∨ 𝑤 = ∅ ) → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 93 | 12 92 | biimtrid | ⊢ ( ¬ 𝑋 = ∪ ∅ → ( 𝑤 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 94 | 2 93 | sylan9r | ⊢ ( ( ¬ 𝑋 = ∪ ∅ ∧ 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) → ( 𝑤 ∈ 𝑦 → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 95 | 94 | com23 | ⊢ ( ( ¬ 𝑋 = ∪ ∅ ∧ 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) → ( 𝑛 ∈ Fin → ( 𝑤 ∈ 𝑦 → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 96 | 69 95 | sylan | ⊢ ( ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ∧ 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) → ( 𝑛 ∈ Fin → ( 𝑤 ∈ 𝑦 → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 97 | 96 | ad2ant2lr | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) → ( 𝑛 ∈ Fin → ( 𝑤 ∈ 𝑦 → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 98 | 97 | imp | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ 𝑛 ∈ Fin ) → ( 𝑤 ∈ 𝑦 → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 99 | 98 | adantrl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ) → ( 𝑤 ∈ 𝑦 → ( 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 100 | 99 | rexlimdv | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ) → ( ∃ 𝑤 ∈ 𝑦 𝑛 ⊆ 𝑤 → ¬ 𝑋 = ∪ 𝑛 ) ) |
| 101 | 61 100 | syld | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ( ¬ ∪ 𝑦 = ∅ ∧ 𝑛 ∈ Fin ) ) → ( 𝑛 ⊆ ∪ 𝑦 → ¬ 𝑋 = ∪ 𝑛 ) ) |
| 102 | 101 | expr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ( 𝑛 ∈ Fin → ( 𝑛 ⊆ ∪ 𝑦 → ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 103 | 102 | impcomd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ( ( 𝑛 ⊆ ∪ 𝑦 ∧ 𝑛 ∈ Fin ) → ¬ 𝑋 = ∪ 𝑛 ) ) |
| 104 | 49 103 | biimtrid | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ( 𝑛 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) → ¬ 𝑋 = ∪ 𝑛 ) ) |
| 105 | 104 | ralrimiv | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ∀ 𝑛 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) |
| 106 | unieq | ⊢ ( 𝑛 = 𝑏 → ∪ 𝑛 = ∪ 𝑏 ) | |
| 107 | 106 | eqeq2d | ⊢ ( 𝑛 = 𝑏 → ( 𝑋 = ∪ 𝑛 ↔ 𝑋 = ∪ 𝑏 ) ) |
| 108 | 107 | notbid | ⊢ ( 𝑛 = 𝑏 → ( ¬ 𝑋 = ∪ 𝑛 ↔ ¬ 𝑋 = ∪ 𝑏 ) ) |
| 109 | 108 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ↔ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) |
| 110 | 105 109 | sylib | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) |
| 111 | 28 48 110 | jca32 | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) ∧ ¬ ∪ 𝑦 = ∅ ) → ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 112 | 111 | ex | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) → ( ¬ ∪ 𝑦 = ∅ → ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ) |
| 113 | orcom | ⊢ ( ( ∪ 𝑦 ∈ { ∅ } ∨ ∪ 𝑦 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ↔ ( ∪ 𝑦 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∨ ∪ 𝑦 ∈ { ∅ } ) ) | |
| 114 | 26 | elsn | ⊢ ( ∪ 𝑦 ∈ { ∅ } ↔ ∪ 𝑦 = ∅ ) |
| 115 | sseq2 | ⊢ ( 𝑧 = ∪ 𝑦 → ( 𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ ∪ 𝑦 ) ) | |
| 116 | pweq | ⊢ ( 𝑧 = ∪ 𝑦 → 𝒫 𝑧 = 𝒫 ∪ 𝑦 ) | |
| 117 | 116 | ineq1d | ⊢ ( 𝑧 = ∪ 𝑦 → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 ∪ 𝑦 ∩ Fin ) ) |
| 118 | 117 | raleqdv | ⊢ ( 𝑧 = ∪ 𝑦 → ( ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ↔ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 119 | 115 118 | anbi12d | ⊢ ( 𝑧 = ∪ 𝑦 → ( ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ↔ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 120 | 119 | elrab | ⊢ ( ∪ 𝑦 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ↔ ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 121 | 114 120 | orbi12i | ⊢ ( ( ∪ 𝑦 ∈ { ∅ } ∨ ∪ 𝑦 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ↔ ( ∪ 𝑦 = ∅ ∨ ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ) |
| 122 | df-or | ⊢ ( ( ∪ 𝑦 = ∅ ∨ ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ↔ ( ¬ ∪ 𝑦 = ∅ → ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ) | |
| 123 | 121 122 | bitr2i | ⊢ ( ( ¬ ∪ 𝑦 = ∅ → ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ↔ ( ∪ 𝑦 ∈ { ∅ } ∨ ∪ 𝑦 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) ) |
| 124 | elun | ⊢ ( ∪ 𝑦 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ↔ ( ∪ 𝑦 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∨ ∪ 𝑦 ∈ { ∅ } ) ) | |
| 125 | 113 123 124 | 3bitr4i | ⊢ ( ( ¬ ∪ 𝑦 = ∅ → ( ∪ 𝑦 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ∪ 𝑦 ∧ ∀ 𝑏 ∈ ( 𝒫 ∪ 𝑦 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ↔ ∪ 𝑦 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) |
| 126 | 112 125 | sylib | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) ) → ∪ 𝑦 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) |
| 127 | 126 | ex | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ( ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) ) |
| 128 | 127 | alrimiv | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ∀ 𝑦 ( ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) ) |
| 129 | fvex | ⊢ ( fi ‘ 𝑥 ) ∈ V | |
| 130 | 129 | pwex | ⊢ 𝒫 ( fi ‘ 𝑥 ) ∈ V |
| 131 | 130 | rabex | ⊢ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∈ V |
| 132 | p0ex | ⊢ { ∅ } ∈ V | |
| 133 | 131 132 | unex | ⊢ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∈ V |
| 134 | 133 | zorn | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) → ∃ 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 ) |
| 135 | 128 134 | syl | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ∃ 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 ) |