This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | ||
| ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | ||
| ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | ||
| Assertion | ptcmplem1 | ⊢ ( 𝜑 → ( 𝑋 = ∪ ( ran 𝑆 ∪ { 𝑋 } ) ∧ ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 2 | ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 3 | ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | |
| 5 | ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | |
| 6 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 7 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 8 | 7 | ptval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 9 | 3 6 8 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 10 | cmptop | ⊢ ( 𝑥 ∈ Comp → 𝑥 ∈ Top ) | |
| 11 | 10 | ssriv | ⊢ Comp ⊆ Top |
| 12 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ Comp ∧ Comp ⊆ Top ) → 𝐹 : 𝐴 ⟶ Top ) | |
| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) |
| 14 | 7 2 | ptbasfi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 15 | 3 13 14 | syl2anc | ⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 16 | uncom | ⊢ ( ran 𝑆 ∪ { 𝑋 } ) = ( { 𝑋 } ∪ ran 𝑆 ) | |
| 17 | 1 | rneqi | ⊢ ran 𝑆 = ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 18 | 17 | uneq2i | ⊢ ( { 𝑋 } ∪ ran 𝑆 ) = ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 19 | 16 18 | eqtri | ⊢ ( ran 𝑆 ∪ { 𝑋 } ) = ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 20 | 19 | fveq2i | ⊢ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 21 | 15 20 | eqtr4di | ⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( 𝜑 → ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) |
| 23 | 9 22 | eqtrd | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) |
| 24 | 23 | unieqd | ⊢ ( 𝜑 → ∪ ( ∏t ‘ 𝐹 ) = ∪ ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) |
| 25 | fibas | ⊢ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ∈ TopBases | |
| 26 | unitg | ⊢ ( ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ∈ TopBases → ∪ ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) = ∪ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) | |
| 27 | 25 26 | ax-mp | ⊢ ∪ ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) = ∪ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) |
| 28 | 24 27 | eqtrdi | ⊢ ( 𝜑 → ∪ ( ∏t ‘ 𝐹 ) = ∪ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) |
| 29 | eqid | ⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) | |
| 30 | 29 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 31 | 3 13 30 | syl2anc | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 32 | 2 31 | eqtrid | ⊢ ( 𝜑 → 𝑋 = ∪ ( ∏t ‘ 𝐹 ) ) |
| 33 | 5 | pwexd | ⊢ ( 𝜑 → 𝒫 𝑋 ∈ V ) |
| 34 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) | |
| 35 | 34 | mptpreima | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑤 ∈ 𝑋 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 } |
| 36 | 35 | ssrab3 | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ⊆ 𝑋 |
| 37 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑋 ∈ ( UFL ∩ dom card ) ) |
| 38 | elpw2g | ⊢ ( 𝑋 ∈ ( UFL ∩ dom card ) → ( ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝒫 𝑋 ↔ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ⊆ 𝑋 ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝒫 𝑋 ↔ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ⊆ 𝑋 ) ) |
| 40 | 36 39 | mpbiri | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝒫 𝑋 ) |
| 41 | 40 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝒫 𝑋 ) |
| 42 | 1 | fmpox | ⊢ ( ∀ 𝑘 ∈ 𝐴 ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝒫 𝑋 ↔ 𝑆 : ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝒫 𝑋 ) |
| 43 | 41 42 | sylib | ⊢ ( 𝜑 → 𝑆 : ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝒫 𝑋 ) |
| 44 | 43 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ 𝒫 𝑋 ) |
| 45 | 33 44 | ssexd | ⊢ ( 𝜑 → ran 𝑆 ∈ V ) |
| 46 | snex | ⊢ { 𝑋 } ∈ V | |
| 47 | unexg | ⊢ ( ( ran 𝑆 ∈ V ∧ { 𝑋 } ∈ V ) → ( ran 𝑆 ∪ { 𝑋 } ) ∈ V ) | |
| 48 | 45 46 47 | sylancl | ⊢ ( 𝜑 → ( ran 𝑆 ∪ { 𝑋 } ) ∈ V ) |
| 49 | fiuni | ⊢ ( ( ran 𝑆 ∪ { 𝑋 } ) ∈ V → ∪ ( ran 𝑆 ∪ { 𝑋 } ) = ∪ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) | |
| 50 | 48 49 | syl | ⊢ ( 𝜑 → ∪ ( ran 𝑆 ∪ { 𝑋 } ) = ∪ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) |
| 51 | 28 32 50 | 3eqtr4d | ⊢ ( 𝜑 → 𝑋 = ∪ ( ran 𝑆 ∪ { 𝑋 } ) ) |
| 52 | 51 23 | jca | ⊢ ( 𝜑 → ( 𝑋 = ∪ ( ran 𝑆 ∪ { 𝑋 } ) ∧ ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) ) |