This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alexsubALT . A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | alexsubALTlem1 | ⊢ ( 𝐽 ∈ Comp → ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 3 | fitop | ⊢ ( 𝐽 ∈ Top → ( fi ‘ 𝐽 ) = 𝐽 ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ ( fi ‘ 𝐽 ) ) = ( topGen ‘ 𝐽 ) ) |
| 5 | tgtop | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) | |
| 6 | 4 5 | eqtr2d | ⊢ ( 𝐽 ∈ Top → 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝐽 ∈ Comp → 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) |
| 8 | velpw | ⊢ ( 𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽 ) | |
| 9 | 1 | cmpcov | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 10 | 9 | 3exp | ⊢ ( 𝐽 ∈ Comp → ( 𝑐 ⊆ 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 11 | 8 10 | biimtrid | ⊢ ( 𝐽 ∈ Comp → ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 12 | 11 | ralrimiv | ⊢ ( 𝐽 ∈ Comp → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 13 | 2fveq3 | ⊢ ( 𝑥 = 𝐽 → ( topGen ‘ ( fi ‘ 𝑥 ) ) = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝑥 = 𝐽 → ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ↔ 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) ) |
| 15 | pweq | ⊢ ( 𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽 ) | |
| 16 | 15 | raleqdv | ⊢ ( 𝑥 = 𝐽 → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 17 | 14 16 | anbi12d | ⊢ ( 𝑥 = 𝐽 → ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ↔ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 18 | 17 | spcegv | ⊢ ( 𝐽 ∈ Comp → ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) → ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 19 | 7 12 18 | mp2and | ⊢ ( 𝐽 ∈ Comp → ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |