This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem14 | |- ( A e. _om -> ( F ` { A } ) = suc ( F ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | 1 | ackbij1lem8 | |- ( A e. _om -> ( F ` { A } ) = ( card ` ~P A ) ) |
| 3 | pweq | |- ( a = (/) -> ~P a = ~P (/) ) |
|
| 4 | 3 | fveq2d | |- ( a = (/) -> ( card ` ~P a ) = ( card ` ~P (/) ) ) |
| 5 | fveq2 | |- ( a = (/) -> ( F ` a ) = ( F ` (/) ) ) |
|
| 6 | suceq | |- ( ( F ` a ) = ( F ` (/) ) -> suc ( F ` a ) = suc ( F ` (/) ) ) |
|
| 7 | 5 6 | syl | |- ( a = (/) -> suc ( F ` a ) = suc ( F ` (/) ) ) |
| 8 | 4 7 | eqeq12d | |- ( a = (/) -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P (/) ) = suc ( F ` (/) ) ) ) |
| 9 | pweq | |- ( a = b -> ~P a = ~P b ) |
|
| 10 | 9 | fveq2d | |- ( a = b -> ( card ` ~P a ) = ( card ` ~P b ) ) |
| 11 | fveq2 | |- ( a = b -> ( F ` a ) = ( F ` b ) ) |
|
| 12 | suceq | |- ( ( F ` a ) = ( F ` b ) -> suc ( F ` a ) = suc ( F ` b ) ) |
|
| 13 | 11 12 | syl | |- ( a = b -> suc ( F ` a ) = suc ( F ` b ) ) |
| 14 | 10 13 | eqeq12d | |- ( a = b -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P b ) = suc ( F ` b ) ) ) |
| 15 | pweq | |- ( a = suc b -> ~P a = ~P suc b ) |
|
| 16 | 15 | fveq2d | |- ( a = suc b -> ( card ` ~P a ) = ( card ` ~P suc b ) ) |
| 17 | fveq2 | |- ( a = suc b -> ( F ` a ) = ( F ` suc b ) ) |
|
| 18 | suceq | |- ( ( F ` a ) = ( F ` suc b ) -> suc ( F ` a ) = suc ( F ` suc b ) ) |
|
| 19 | 17 18 | syl | |- ( a = suc b -> suc ( F ` a ) = suc ( F ` suc b ) ) |
| 20 | 16 19 | eqeq12d | |- ( a = suc b -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P suc b ) = suc ( F ` suc b ) ) ) |
| 21 | pweq | |- ( a = A -> ~P a = ~P A ) |
|
| 22 | 21 | fveq2d | |- ( a = A -> ( card ` ~P a ) = ( card ` ~P A ) ) |
| 23 | fveq2 | |- ( a = A -> ( F ` a ) = ( F ` A ) ) |
|
| 24 | suceq | |- ( ( F ` a ) = ( F ` A ) -> suc ( F ` a ) = suc ( F ` A ) ) |
|
| 25 | 23 24 | syl | |- ( a = A -> suc ( F ` a ) = suc ( F ` A ) ) |
| 26 | 22 25 | eqeq12d | |- ( a = A -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P A ) = suc ( F ` A ) ) ) |
| 27 | df-1o | |- 1o = suc (/) |
|
| 28 | pw0 | |- ~P (/) = { (/) } |
|
| 29 | 28 | fveq2i | |- ( card ` ~P (/) ) = ( card ` { (/) } ) |
| 30 | 0ex | |- (/) e. _V |
|
| 31 | cardsn | |- ( (/) e. _V -> ( card ` { (/) } ) = 1o ) |
|
| 32 | 30 31 | ax-mp | |- ( card ` { (/) } ) = 1o |
| 33 | 29 32 | eqtri | |- ( card ` ~P (/) ) = 1o |
| 34 | 1 | ackbij1lem13 | |- ( F ` (/) ) = (/) |
| 35 | suceq | |- ( ( F ` (/) ) = (/) -> suc ( F ` (/) ) = suc (/) ) |
|
| 36 | 34 35 | ax-mp | |- suc ( F ` (/) ) = suc (/) |
| 37 | 27 33 36 | 3eqtr4i | |- ( card ` ~P (/) ) = suc ( F ` (/) ) |
| 38 | oveq2 | |- ( ( card ` ~P b ) = suc ( F ` b ) -> ( ( card ` ~P b ) +o ( card ` ~P b ) ) = ( ( card ` ~P b ) +o suc ( F ` b ) ) ) |
|
| 39 | 38 | adantl | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( ( card ` ~P b ) +o ( card ` ~P b ) ) = ( ( card ` ~P b ) +o suc ( F ` b ) ) ) |
| 40 | ackbij1lem5 | |- ( b e. _om -> ( card ` ~P suc b ) = ( ( card ` ~P b ) +o ( card ` ~P b ) ) ) |
|
| 41 | 40 | adantr | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( card ` ~P suc b ) = ( ( card ` ~P b ) +o ( card ` ~P b ) ) ) |
| 42 | df-suc | |- suc b = ( b u. { b } ) |
|
| 43 | 42 | equncomi | |- suc b = ( { b } u. b ) |
| 44 | 43 | fveq2i | |- ( F ` suc b ) = ( F ` ( { b } u. b ) ) |
| 45 | ackbij1lem4 | |- ( b e. _om -> { b } e. ( ~P _om i^i Fin ) ) |
|
| 46 | 45 | adantr | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> { b } e. ( ~P _om i^i Fin ) ) |
| 47 | ackbij1lem3 | |- ( b e. _om -> b e. ( ~P _om i^i Fin ) ) |
|
| 48 | 47 | adantr | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> b e. ( ~P _om i^i Fin ) ) |
| 49 | incom | |- ( { b } i^i b ) = ( b i^i { b } ) |
|
| 50 | nnord | |- ( b e. _om -> Ord b ) |
|
| 51 | orddisj | |- ( Ord b -> ( b i^i { b } ) = (/) ) |
|
| 52 | 50 51 | syl | |- ( b e. _om -> ( b i^i { b } ) = (/) ) |
| 53 | 49 52 | eqtrid | |- ( b e. _om -> ( { b } i^i b ) = (/) ) |
| 54 | 53 | adantr | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( { b } i^i b ) = (/) ) |
| 55 | 1 | ackbij1lem9 | |- ( ( { b } e. ( ~P _om i^i Fin ) /\ b e. ( ~P _om i^i Fin ) /\ ( { b } i^i b ) = (/) ) -> ( F ` ( { b } u. b ) ) = ( ( F ` { b } ) +o ( F ` b ) ) ) |
| 56 | 46 48 54 55 | syl3anc | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` ( { b } u. b ) ) = ( ( F ` { b } ) +o ( F ` b ) ) ) |
| 57 | 1 | ackbij1lem8 | |- ( b e. _om -> ( F ` { b } ) = ( card ` ~P b ) ) |
| 58 | 57 | adantr | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` { b } ) = ( card ` ~P b ) ) |
| 59 | 58 | oveq1d | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( ( F ` { b } ) +o ( F ` b ) ) = ( ( card ` ~P b ) +o ( F ` b ) ) ) |
| 60 | 56 59 | eqtrd | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` ( { b } u. b ) ) = ( ( card ` ~P b ) +o ( F ` b ) ) ) |
| 61 | 44 60 | eqtrid | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` suc b ) = ( ( card ` ~P b ) +o ( F ` b ) ) ) |
| 62 | suceq | |- ( ( F ` suc b ) = ( ( card ` ~P b ) +o ( F ` b ) ) -> suc ( F ` suc b ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
|
| 63 | 61 62 | syl | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> suc ( F ` suc b ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
| 64 | nnfi | |- ( b e. _om -> b e. Fin ) |
|
| 65 | pwfi | |- ( b e. Fin <-> ~P b e. Fin ) |
|
| 66 | 64 65 | sylib | |- ( b e. _om -> ~P b e. Fin ) |
| 67 | 66 | adantr | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ~P b e. Fin ) |
| 68 | ficardom | |- ( ~P b e. Fin -> ( card ` ~P b ) e. _om ) |
|
| 69 | 67 68 | syl | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( card ` ~P b ) e. _om ) |
| 70 | 1 | ackbij1lem10 | |- F : ( ~P _om i^i Fin ) --> _om |
| 71 | 70 | ffvelcdmi | |- ( b e. ( ~P _om i^i Fin ) -> ( F ` b ) e. _om ) |
| 72 | 48 71 | syl | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` b ) e. _om ) |
| 73 | nnasuc | |- ( ( ( card ` ~P b ) e. _om /\ ( F ` b ) e. _om ) -> ( ( card ` ~P b ) +o suc ( F ` b ) ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
|
| 74 | 69 72 73 | syl2anc | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( ( card ` ~P b ) +o suc ( F ` b ) ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
| 75 | 63 74 | eqtr4d | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> suc ( F ` suc b ) = ( ( card ` ~P b ) +o suc ( F ` b ) ) ) |
| 76 | 39 41 75 | 3eqtr4d | |- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( card ` ~P suc b ) = suc ( F ` suc b ) ) |
| 77 | 76 | ex | |- ( b e. _om -> ( ( card ` ~P b ) = suc ( F ` b ) -> ( card ` ~P suc b ) = suc ( F ` suc b ) ) ) |
| 78 | 8 14 20 26 37 77 | finds | |- ( A e. _om -> ( card ` ~P A ) = suc ( F ` A ) ) |
| 79 | 2 78 | eqtrd | |- ( A e. _om -> ( F ` { A } ) = suc ( F ` A ) ) |