This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | ||
| 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | ||
| 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | ||
| 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | ||
| 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | ||
| 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | ||
| 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | ||
| 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | ||
| 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | ||
| Assertion | 4sqlem16 | ⊢ ( 𝜑 → ( 𝑅 ≤ 𝑀 ∧ ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | |
| 4 | 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | |
| 6 | 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | |
| 7 | 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | |
| 8 | 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 9 | 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 10 | 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 11 | 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | |
| 12 | 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | |
| 13 | 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 14 | 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 15 | 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 16 | 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 17 | 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | |
| 18 | 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | |
| 19 | eluz2nn | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) | |
| 20 | 8 19 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 21 | 9 20 13 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
| 22 | 21 | simpld | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 23 | zsqcl | ⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℤ ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 25 | 24 | zred | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 26 | 10 20 14 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
| 27 | 26 | simpld | ⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 28 | zsqcl | ⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℤ ) | |
| 29 | 27 28 | syl | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℤ ) |
| 30 | 29 | zred | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℝ ) |
| 31 | 25 30 | readdcld | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℝ ) |
| 32 | 11 20 15 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
| 33 | 32 | simpld | ⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 34 | zsqcl | ⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℤ ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℤ ) |
| 36 | 35 | zred | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℝ ) |
| 37 | 12 20 16 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
| 38 | 37 | simpld | ⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
| 39 | zsqcl | ⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℤ ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℤ ) |
| 41 | 40 | zred | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℝ ) |
| 42 | 36 41 | readdcld | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℝ ) |
| 43 | 20 | nnred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 44 | 43 | resqcld | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℝ ) |
| 45 | 44 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℝ ) |
| 46 | 45 | rehalfcld | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℝ ) |
| 47 | 9 20 13 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 48 | 10 20 14 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 49 | 25 30 46 46 47 48 | le2addd | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 50 | 45 | recnd | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 51 | 50 | 2halvesd | ⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) = ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 52 | 49 51 | breqtrd | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 53 | 11 20 15 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 54 | 12 20 16 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 55 | 36 41 46 46 53 54 | le2addd | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 56 | 55 51 | breqtrd | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 57 | 31 42 45 45 52 56 | le2addd | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 58 | 44 | recnd | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 59 | 58 | 2halvesd | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) = ( 𝑀 ↑ 2 ) ) |
| 60 | 57 59 | breqtrd | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 ↑ 2 ) ) |
| 61 | 43 | recnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 62 | 61 | sqvald | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 63 | 60 62 | breqtrd | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 · 𝑀 ) ) |
| 64 | 31 42 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ) |
| 65 | 20 | nngt0d | ⊢ ( 𝜑 → 0 < 𝑀 ) |
| 66 | ledivmul | ⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ≤ 𝑀 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 · 𝑀 ) ) ) | |
| 67 | 64 43 43 65 66 | syl112anc | ⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ≤ 𝑀 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 · 𝑀 ) ) ) |
| 68 | 63 67 | mpbird | ⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ≤ 𝑀 ) |
| 69 | 17 68 | eqbrtrid | ⊢ ( 𝜑 → 𝑅 ≤ 𝑀 ) |
| 70 | simpr | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → 𝑅 = 0 ) | |
| 71 | 17 70 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ) |
| 72 | 64 | recnd | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℂ ) |
| 73 | 20 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 74 | 72 61 73 | diveq0ad | ⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ) ) |
| 75 | zsqcl2 | ⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) | |
| 76 | 22 75 | syl | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 77 | zsqcl2 | ⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) | |
| 78 | 27 77 | syl | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 79 | 76 78 | nn0addcld | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℕ0 ) |
| 80 | 79 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 81 | zsqcl2 | ⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) | |
| 82 | 33 81 | syl | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
| 83 | zsqcl2 | ⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) | |
| 84 | 38 83 | syl | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
| 85 | 82 84 | nn0addcld | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℕ0 ) |
| 86 | 85 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) |
| 87 | add20 | ⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∧ ( ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) ) | |
| 88 | 31 80 42 86 87 | syl22anc | ⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 89 | 74 88 | bitrd | ⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 90 | 89 | biimpa | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 91 | 71 90 | syldan | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 92 | 91 | simpld | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ) |
| 93 | 76 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐸 ↑ 2 ) ) |
| 94 | 78 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐹 ↑ 2 ) ) |
| 95 | add20 | ⊢ ( ( ( ( 𝐸 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐸 ↑ 2 ) ) ∧ ( ( 𝐹 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ↑ 2 ) ) ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ↔ ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) ) | |
| 96 | 25 93 30 94 95 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ↔ ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) ) |
| 97 | 96 | biimpa | ⊢ ( ( 𝜑 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ) → ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) |
| 98 | 92 97 | syldan | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) |
| 99 | 98 | simpld | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐸 ↑ 2 ) = 0 ) |
| 100 | 9 20 13 99 | 4sqlem9 | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |
| 101 | 98 | simprd | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐹 ↑ 2 ) = 0 ) |
| 102 | 10 20 14 101 | 4sqlem9 | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) |
| 103 | 20 | nnsqcld | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
| 104 | 103 | nnzd | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 105 | zsqcl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) | |
| 106 | 9 105 | syl | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 107 | zsqcl | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) | |
| 108 | 10 107 | syl | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 109 | dvds2add | ⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℤ ∧ ( 𝐵 ↑ 2 ) ∈ ℤ ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) | |
| 110 | 104 106 108 109 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 111 | 110 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 112 | 100 102 111 | mp2and | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 113 | 91 | simprd | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) |
| 114 | 82 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐺 ↑ 2 ) ) |
| 115 | 84 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐻 ↑ 2 ) ) |
| 116 | add20 | ⊢ ( ( ( ( 𝐺 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐺 ↑ 2 ) ) ∧ ( ( 𝐻 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐻 ↑ 2 ) ) ) → ( ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ↔ ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) ) | |
| 117 | 36 114 41 115 116 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ↔ ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) ) |
| 118 | 117 | biimpa | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) → ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) |
| 119 | 113 118 | syldan | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) |
| 120 | 119 | simpld | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐺 ↑ 2 ) = 0 ) |
| 121 | 11 20 15 120 | 4sqlem9 | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) |
| 122 | 119 | simprd | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐻 ↑ 2 ) = 0 ) |
| 123 | 12 20 16 122 | 4sqlem9 | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) |
| 124 | zsqcl | ⊢ ( 𝐶 ∈ ℤ → ( 𝐶 ↑ 2 ) ∈ ℤ ) | |
| 125 | 11 124 | syl | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 126 | zsqcl | ⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ↑ 2 ) ∈ ℤ ) | |
| 127 | 12 126 | syl | ⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 128 | dvds2add | ⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝐶 ↑ 2 ) ∈ ℤ ∧ ( 𝐷 ↑ 2 ) ∈ ℤ ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | |
| 129 | 104 125 127 128 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 130 | 129 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 131 | 121 123 130 | mp2and | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 132 | 106 108 | zaddcld | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 133 | 125 127 | zaddcld | ⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 134 | dvds2add | ⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ∧ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∧ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) ) | |
| 135 | 104 132 133 134 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∧ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) ) |
| 136 | 135 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∧ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) ) |
| 137 | 112 131 136 | mp2and | ⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 138 | 104 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 139 | 132 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 140 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) = ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 141 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 4sqlem15 | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 142 | 141 | simpld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ) |
| 143 | 142 | simpld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ) |
| 144 | 46 | recnd | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℂ ) |
| 145 | 24 | zcnd | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 146 | 144 145 | subeq0ad | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ↔ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐸 ↑ 2 ) ) ) |
| 147 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ↔ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐸 ↑ 2 ) ) ) |
| 148 | 143 147 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐸 ↑ 2 ) ) |
| 149 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 150 | 148 149 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℤ ) |
| 151 | 150 150 | zaddcld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 152 | 140 151 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℤ ) |
| 153 | 139 152 | zsubcld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ∈ ℤ ) |
| 154 | 133 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 155 | 154 152 | zsubcld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ∈ ℤ ) |
| 156 | 106 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 157 | 156 150 | zsubcld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 158 | 108 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 159 | 158 150 | zsubcld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 160 | 9 20 13 143 | 4sqlem10 | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 161 | 142 | simprd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) |
| 162 | 10 20 14 161 | 4sqlem10 | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 163 | 138 157 159 160 162 | dvds2addd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 164 | 106 | zcnd | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 165 | 108 | zcnd | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 166 | 164 165 144 144 | addsub4d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 167 | 51 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 168 | 166 167 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 169 | 168 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 170 | 163 169 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 171 | 125 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 172 | 171 150 | zsubcld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 173 | 127 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 174 | 173 150 | zsubcld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 175 | 141 | simprd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 176 | 175 | simpld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ) |
| 177 | 11 20 15 176 | 4sqlem10 | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 178 | 175 | simprd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) |
| 179 | 12 20 16 178 | 4sqlem10 | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 180 | 138 172 174 177 179 | dvds2addd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 181 | 125 | zcnd | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 182 | 127 | zcnd | ⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 183 | 181 182 144 144 | addsub4d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 184 | 51 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 185 | 183 184 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 186 | 185 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 187 | 180 186 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 188 | 138 153 155 170 187 | dvds2addd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) ) |
| 189 | 132 | zcnd | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 190 | 133 | zcnd | ⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 191 | 189 190 50 50 | addsub4d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) ) |
| 192 | 59 | oveq2d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 193 | 191 192 | eqtr3d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 194 | 193 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 195 | 188 194 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 196 | 132 133 | zaddcld | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ ℤ ) |
| 197 | 196 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ ℤ ) |
| 198 | dvdssubr | ⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) ) | |
| 199 | 138 197 198 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) ) |
| 200 | 195 199 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 201 | 137 200 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 202 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 203 | 201 202 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) |
| 204 | 203 | ex | ⊢ ( 𝜑 → ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
| 205 | 69 204 | jca | ⊢ ( 𝜑 → ( 𝑅 ≤ 𝑀 ∧ ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) ) |