This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sqlem9.5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ↑ 2 ) = 0 ) | ||
| Assertion | 4sqlem9 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 3 | 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 4 | 4sqlem9.5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ↑ 2 ) = 0 ) | |
| 5 | 1 2 3 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 6 | 5 | simpld | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 7 | 6 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 8 | sqeq0 | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ↑ 2 ) = 0 ↔ 𝐵 = 0 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) = 0 ↔ 𝐵 = 0 ) ) |
| 10 | 9 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝐵 ↑ 2 ) = 0 ) → 𝐵 = 0 ) |
| 11 | 4 10 | syldan | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 = 0 ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 − 0 ) ) |
| 13 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℤ ) |
| 14 | 13 | zcnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℂ ) |
| 15 | 14 | subid1d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 16 | 12 15 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 − 𝐵 ) = 𝐴 ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( 𝐴 / 𝑀 ) ) |
| 18 | 5 | simprd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) |
| 20 | 17 19 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 / 𝑀 ) ∈ ℤ ) |
| 21 | 2 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 22 | 2 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 23 | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝐴 / 𝑀 ) ∈ ℤ ) ) | |
| 24 | 21 22 1 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 ∥ 𝐴 ↔ ( 𝐴 / 𝑀 ) ∈ ℤ ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝐴 / 𝑀 ) ∈ ℤ ) ) |
| 26 | 20 25 | mpbird | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∥ 𝐴 ) |
| 27 | dvdssq | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) | |
| 28 | 21 13 27 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
| 29 | 26 28 | mpbid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |