This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| Assertion | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 3 | 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 4 | 1 2 3 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 5 | 4 | simpld | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 6 | 5 | zred | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 7 | 2 | nnrpd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 8 | 7 | rphalfcld | ⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ+ ) |
| 9 | 8 | rpred | ⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
| 10 | 1 2 3 | 4sqlem6 | ⊢ ( 𝜑 → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |
| 11 | 10 | simprd | ⊢ ( 𝜑 → 𝐵 < ( 𝑀 / 2 ) ) |
| 12 | 6 9 11 | ltled | ⊢ ( 𝜑 → 𝐵 ≤ ( 𝑀 / 2 ) ) |
| 13 | 10 | simpld | ⊢ ( 𝜑 → - ( 𝑀 / 2 ) ≤ 𝐵 ) |
| 14 | 9 6 13 | lenegcon1d | ⊢ ( 𝜑 → - 𝐵 ≤ ( 𝑀 / 2 ) ) |
| 15 | 8 | rpge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝑀 / 2 ) ) |
| 16 | lenegsq | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝑀 / 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 / 2 ) ) → ( ( 𝐵 ≤ ( 𝑀 / 2 ) ∧ - 𝐵 ≤ ( 𝑀 / 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ ( ( 𝑀 / 2 ) ↑ 2 ) ) ) | |
| 17 | 6 9 15 16 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐵 ≤ ( 𝑀 / 2 ) ∧ - 𝐵 ≤ ( 𝑀 / 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ ( ( 𝑀 / 2 ) ↑ 2 ) ) ) |
| 18 | 12 14 17 | mpbi2and | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≤ ( ( 𝑀 / 2 ) ↑ 2 ) ) |
| 19 | 2cnd | ⊢ ( 𝜑 → 2 ∈ ℂ ) | |
| 20 | 19 | sqvald | ⊢ ( 𝜑 → ( 2 ↑ 2 ) = ( 2 · 2 ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 22 | 2 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 23 | 2ne0 | ⊢ 2 ≠ 0 | |
| 24 | 23 | a1i | ⊢ ( 𝜑 → 2 ≠ 0 ) |
| 25 | 22 19 24 | sqdivd | ⊢ ( 𝜑 → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 26 | 22 | sqcld | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 27 | 26 19 19 24 24 | divdiv1d | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 28 | 21 25 27 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 29 | 18 28 | breqtrd | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |