This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | ||
| 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | ||
| 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | ||
| 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | ||
| 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | ||
| 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | ||
| 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | ||
| 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | ||
| 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | ||
| Assertion | 4sqlem17 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | |
| 4 | 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | |
| 6 | 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | |
| 7 | 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | |
| 8 | 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 9 | 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 10 | 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 11 | 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | |
| 12 | 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | |
| 13 | 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 14 | 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 15 | 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 16 | 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 17 | 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | |
| 18 | 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 4sqlem16 | ⊢ ( 𝜑 → ( 𝑅 ≤ 𝑀 ∧ ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) ) |
| 20 | 19 | simpld | ⊢ ( 𝜑 → 𝑅 ≤ 𝑀 ) |
| 21 | 6 | ssrab3 | ⊢ 𝑇 ⊆ ℕ |
| 22 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 23 | 21 22 | sseqtri | ⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
| 24 | 1 2 3 4 5 6 7 | 4sqlem13 | ⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
| 25 | 24 | simpld | ⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
| 26 | infssuzcl | ⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) | |
| 27 | 23 25 26 | sylancr | ⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 28 | 7 27 | eqeltrid | ⊢ ( 𝜑 → 𝑀 ∈ 𝑇 ) |
| 29 | 21 28 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 30 | 29 | nnred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 31 | 24 | simprd | ⊢ ( 𝜑 → 𝑀 < 𝑃 ) |
| 32 | 30 31 | ltned | ⊢ ( 𝜑 → 𝑀 ≠ 𝑃 ) |
| 33 | 29 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 34 | 33 | sqvald | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 35 | 34 | breq1d | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ↔ ( 𝑀 · 𝑀 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
| 36 | 29 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 37 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 38 | 4 37 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 39 | 29 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 40 | dvdscmulr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( ( 𝑀 · 𝑀 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 ∥ 𝑃 ) ) | |
| 41 | 36 38 36 39 40 | syl112anc | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑀 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 ∥ 𝑃 ) ) |
| 42 | dvdsprm | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑀 ∥ 𝑃 ↔ 𝑀 = 𝑃 ) ) | |
| 43 | 8 4 42 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ∥ 𝑃 ↔ 𝑀 = 𝑃 ) ) |
| 44 | 35 41 43 | 3bitrd | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 = 𝑃 ) ) |
| 45 | 44 | necon3bbid | ⊢ ( 𝜑 → ( ¬ ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 ≠ 𝑃 ) ) |
| 46 | 32 45 | mpbird | ⊢ ( 𝜑 → ¬ ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) |
| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 4sqlem14 | ⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
| 48 | elnn0 | ⊢ ( 𝑅 ∈ ℕ0 ↔ ( 𝑅 ∈ ℕ ∨ 𝑅 = 0 ) ) | |
| 49 | 47 48 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∈ ℕ ∨ 𝑅 = 0 ) ) |
| 50 | 49 | ord | ⊢ ( 𝜑 → ( ¬ 𝑅 ∈ ℕ → 𝑅 = 0 ) ) |
| 51 | orc | ⊢ ( 𝑅 = 0 → ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) | |
| 52 | 19 | simprd | ⊢ ( 𝜑 → ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
| 53 | 51 52 | syl5 | ⊢ ( 𝜑 → ( 𝑅 = 0 → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
| 54 | 50 53 | syld | ⊢ ( 𝜑 → ( ¬ 𝑅 ∈ ℕ → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
| 55 | 46 54 | mt3d | ⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 56 | gzreim | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] ) | |
| 57 | 9 10 56 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] ) |
| 58 | gzcn | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) | |
| 59 | 57 58 | syl | ⊢ ( 𝜑 → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 60 | 59 | absvalsq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) ) |
| 61 | 9 | zred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 62 | 10 | zred | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 63 | 61 62 | crred | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐴 ) |
| 64 | 63 | oveq1d | ⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 65 | 61 62 | crimd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) |
| 66 | 65 | oveq1d | ⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 67 | 64 66 | oveq12d | ⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 68 | 60 67 | eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 69 | gzreim | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℤ[i] ) | |
| 70 | 11 12 69 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℤ[i] ) |
| 71 | gzcn | ⊢ ( ( 𝐶 + ( i · 𝐷 ) ) ∈ ℤ[i] → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℂ ) | |
| 72 | 70 71 | syl | ⊢ ( 𝜑 → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℂ ) |
| 73 | 72 | absvalsq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) ) |
| 74 | 11 | zred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 75 | 12 | zred | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 76 | 74 75 | crred | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐶 ) |
| 77 | 76 | oveq1d | ⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( 𝐶 ↑ 2 ) ) |
| 78 | 74 75 | crimd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐷 ) |
| 79 | 78 | oveq1d | ⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( 𝐷 ↑ 2 ) ) |
| 80 | 77 79 | oveq12d | ⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 81 | 73 80 | eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 82 | 68 81 | oveq12d | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 83 | 18 82 | eqtr4d | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) ) |
| 84 | 83 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) / 𝑀 ) = ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) ) |
| 85 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 86 | 4 85 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 87 | 86 | nncnd | ⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 88 | 87 33 39 | divcan3d | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) / 𝑀 ) = 𝑃 ) |
| 89 | 84 88 | eqtr3d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) = 𝑃 ) |
| 90 | 9 29 13 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
| 91 | 90 | simpld | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 92 | 10 29 14 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
| 93 | 92 | simpld | ⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 94 | gzreim | ⊢ ( ( 𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ) → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℤ[i] ) | |
| 95 | 91 93 94 | syl2anc | ⊢ ( 𝜑 → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℤ[i] ) |
| 96 | gzcn | ⊢ ( ( 𝐸 + ( i · 𝐹 ) ) ∈ ℤ[i] → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℂ ) | |
| 97 | 95 96 | syl | ⊢ ( 𝜑 → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℂ ) |
| 98 | 97 | absvalsq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) ) ) |
| 99 | 91 | zred | ⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 100 | 93 | zred | ⊢ ( 𝜑 → 𝐹 ∈ ℝ ) |
| 101 | 99 100 | crred | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) = 𝐸 ) |
| 102 | 101 | oveq1d | ⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( 𝐸 ↑ 2 ) ) |
| 103 | 99 100 | crimd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) = 𝐹 ) |
| 104 | 103 | oveq1d | ⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( 𝐹 ↑ 2 ) ) |
| 105 | 102 104 | oveq12d | ⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 106 | 98 105 | eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 107 | 11 29 15 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
| 108 | 107 | simpld | ⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 109 | 12 29 16 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
| 110 | 109 | simpld | ⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
| 111 | gzreim | ⊢ ( ( 𝐺 ∈ ℤ ∧ 𝐻 ∈ ℤ ) → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℤ[i] ) | |
| 112 | 108 110 111 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℤ[i] ) |
| 113 | gzcn | ⊢ ( ( 𝐺 + ( i · 𝐻 ) ) ∈ ℤ[i] → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℂ ) | |
| 114 | 112 113 | syl | ⊢ ( 𝜑 → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℂ ) |
| 115 | 114 | absvalsq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) ) |
| 116 | 108 | zred | ⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
| 117 | 110 | zred | ⊢ ( 𝜑 → 𝐻 ∈ ℝ ) |
| 118 | 116 117 | crred | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) = 𝐺 ) |
| 119 | 118 | oveq1d | ⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( 𝐺 ↑ 2 ) ) |
| 120 | 116 117 | crimd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) = 𝐻 ) |
| 121 | 120 | oveq1d | ⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( 𝐻 ↑ 2 ) ) |
| 122 | 119 121 | oveq12d | ⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) = ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) |
| 123 | 115 122 | eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) |
| 124 | 106 123 | oveq12d | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) = ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 125 | 124 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) |
| 126 | 125 17 | eqtr4di | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) = 𝑅 ) |
| 127 | 89 126 | oveq12d | ⊢ ( 𝜑 → ( ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) · ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) ) = ( 𝑃 · 𝑅 ) ) |
| 128 | 55 | nncnd | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 129 | 87 128 | mulcomd | ⊢ ( 𝜑 → ( 𝑃 · 𝑅 ) = ( 𝑅 · 𝑃 ) ) |
| 130 | 127 129 | eqtrd | ⊢ ( 𝜑 → ( ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) · ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) ) = ( 𝑅 · 𝑃 ) ) |
| 131 | eqid | ⊢ ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) | |
| 132 | eqid | ⊢ ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) | |
| 133 | 9 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 134 | ax-icn | ⊢ i ∈ ℂ | |
| 135 | 10 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 136 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) | |
| 137 | 134 135 136 | sylancr | ⊢ ( 𝜑 → ( i · 𝐵 ) ∈ ℂ ) |
| 138 | 91 | zcnd | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 139 | 93 | zcnd | ⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 140 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐹 ∈ ℂ ) → ( i · 𝐹 ) ∈ ℂ ) | |
| 141 | 134 139 140 | sylancr | ⊢ ( 𝜑 → ( i · 𝐹 ) ∈ ℂ ) |
| 142 | 133 137 138 141 | addsub4d | ⊢ ( 𝜑 → ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) = ( ( 𝐴 − 𝐸 ) + ( ( i · 𝐵 ) − ( i · 𝐹 ) ) ) ) |
| 143 | 134 | a1i | ⊢ ( 𝜑 → i ∈ ℂ ) |
| 144 | 143 135 139 | subdid | ⊢ ( 𝜑 → ( i · ( 𝐵 − 𝐹 ) ) = ( ( i · 𝐵 ) − ( i · 𝐹 ) ) ) |
| 145 | 144 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) = ( ( 𝐴 − 𝐸 ) + ( ( i · 𝐵 ) − ( i · 𝐹 ) ) ) ) |
| 146 | 142 145 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) = ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) ) |
| 147 | 146 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) / 𝑀 ) = ( ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) / 𝑀 ) ) |
| 148 | 133 138 | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐸 ) ∈ ℂ ) |
| 149 | 135 139 | subcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐹 ) ∈ ℂ ) |
| 150 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( 𝐵 − 𝐹 ) ∈ ℂ ) → ( i · ( 𝐵 − 𝐹 ) ) ∈ ℂ ) | |
| 151 | 134 149 150 | sylancr | ⊢ ( 𝜑 → ( i · ( 𝐵 − 𝐹 ) ) ∈ ℂ ) |
| 152 | 148 151 33 39 | divdird | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) / 𝑀 ) = ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( ( i · ( 𝐵 − 𝐹 ) ) / 𝑀 ) ) ) |
| 153 | 143 149 33 39 | divassd | ⊢ ( 𝜑 → ( ( i · ( 𝐵 − 𝐹 ) ) / 𝑀 ) = ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) |
| 154 | 153 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( ( i · ( 𝐵 − 𝐹 ) ) / 𝑀 ) ) = ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ) |
| 155 | 147 152 154 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) / 𝑀 ) = ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ) |
| 156 | 90 | simprd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) |
| 157 | 92 | simprd | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) |
| 158 | gzreim | ⊢ ( ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) → ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ∈ ℤ[i] ) | |
| 159 | 156 157 158 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 160 | 155 159 | eqeltrd | ⊢ ( 𝜑 → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) / 𝑀 ) ∈ ℤ[i] ) |
| 161 | 11 | zcnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 162 | 12 | zcnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 163 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( i · 𝐷 ) ∈ ℂ ) | |
| 164 | 134 162 163 | sylancr | ⊢ ( 𝜑 → ( i · 𝐷 ) ∈ ℂ ) |
| 165 | 108 | zcnd | ⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 166 | 110 | zcnd | ⊢ ( 𝜑 → 𝐻 ∈ ℂ ) |
| 167 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐻 ∈ ℂ ) → ( i · 𝐻 ) ∈ ℂ ) | |
| 168 | 134 166 167 | sylancr | ⊢ ( 𝜑 → ( i · 𝐻 ) ∈ ℂ ) |
| 169 | 161 164 165 168 | addsub4d | ⊢ ( 𝜑 → ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) = ( ( 𝐶 − 𝐺 ) + ( ( i · 𝐷 ) − ( i · 𝐻 ) ) ) ) |
| 170 | 143 162 166 | subdid | ⊢ ( 𝜑 → ( i · ( 𝐷 − 𝐻 ) ) = ( ( i · 𝐷 ) − ( i · 𝐻 ) ) ) |
| 171 | 170 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) = ( ( 𝐶 − 𝐺 ) + ( ( i · 𝐷 ) − ( i · 𝐻 ) ) ) ) |
| 172 | 169 171 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) = ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) ) |
| 173 | 172 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) / 𝑀 ) = ( ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) / 𝑀 ) ) |
| 174 | 161 165 | subcld | ⊢ ( 𝜑 → ( 𝐶 − 𝐺 ) ∈ ℂ ) |
| 175 | 162 166 | subcld | ⊢ ( 𝜑 → ( 𝐷 − 𝐻 ) ∈ ℂ ) |
| 176 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( 𝐷 − 𝐻 ) ∈ ℂ ) → ( i · ( 𝐷 − 𝐻 ) ) ∈ ℂ ) | |
| 177 | 134 175 176 | sylancr | ⊢ ( 𝜑 → ( i · ( 𝐷 − 𝐻 ) ) ∈ ℂ ) |
| 178 | 174 177 33 39 | divdird | ⊢ ( 𝜑 → ( ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) / 𝑀 ) = ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( ( i · ( 𝐷 − 𝐻 ) ) / 𝑀 ) ) ) |
| 179 | 143 175 33 39 | divassd | ⊢ ( 𝜑 → ( ( i · ( 𝐷 − 𝐻 ) ) / 𝑀 ) = ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) |
| 180 | 179 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( ( i · ( 𝐷 − 𝐻 ) ) / 𝑀 ) ) = ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ) |
| 181 | 173 178 180 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) / 𝑀 ) = ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ) |
| 182 | 107 | simprd | ⊢ ( 𝜑 → ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) |
| 183 | 109 | simprd | ⊢ ( 𝜑 → ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) |
| 184 | gzreim | ⊢ ( ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ∈ ℤ[i] ) | |
| 185 | 182 183 184 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 186 | 181 185 | eqeltrd | ⊢ ( 𝜑 → ( ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) / 𝑀 ) ∈ ℤ[i] ) |
| 187 | 86 | nnnn0d | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 188 | 89 187 | eqeltrd | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) ∈ ℕ0 ) |
| 189 | 1 57 70 95 112 131 132 29 160 186 188 | mul4sqlem | ⊢ ( 𝜑 → ( ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) · ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) ) ∈ 𝑆 ) |
| 190 | 130 189 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑅 · 𝑃 ) ∈ 𝑆 ) |
| 191 | oveq1 | ⊢ ( 𝑖 = 𝑅 → ( 𝑖 · 𝑃 ) = ( 𝑅 · 𝑃 ) ) | |
| 192 | 191 | eleq1d | ⊢ ( 𝑖 = 𝑅 → ( ( 𝑖 · 𝑃 ) ∈ 𝑆 ↔ ( 𝑅 · 𝑃 ) ∈ 𝑆 ) ) |
| 193 | 192 6 | elrab2 | ⊢ ( 𝑅 ∈ 𝑇 ↔ ( 𝑅 ∈ ℕ ∧ ( 𝑅 · 𝑃 ) ∈ 𝑆 ) ) |
| 194 | 55 190 193 | sylanbrc | ⊢ ( 𝜑 → 𝑅 ∈ 𝑇 ) |
| 195 | infssuzle | ⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑅 ∈ 𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑅 ) | |
| 196 | 23 194 195 | sylancr | ⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ≤ 𝑅 ) |
| 197 | 7 196 | eqbrtrid | ⊢ ( 𝜑 → 𝑀 ≤ 𝑅 ) |
| 198 | 55 | nnred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 199 | 198 30 | letri3d | ⊢ ( 𝜑 → ( 𝑅 = 𝑀 ↔ ( 𝑅 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) ) |
| 200 | 20 197 199 | mpbir2and | ⊢ ( 𝜑 → 𝑅 = 𝑀 ) |
| 201 | 200 | olcd | ⊢ ( 𝜑 → ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) |
| 202 | 201 52 | mpd | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) |
| 203 | 202 46 | pm2.65i | ⊢ ¬ 𝜑 |