This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssubr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( 𝑁 − 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) |
| 3 | dvdsadd | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 𝑀 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝑁 − 𝑀 ) ↔ 𝑀 ∥ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑁 − 𝑀 ) ↔ 𝑀 ∥ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 5 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | pncan3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + ( 𝑁 − 𝑀 ) ) = 𝑁 ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + ( 𝑁 − 𝑀 ) ) = 𝑁 ) |
| 9 | 8 | breq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ↔ 𝑀 ∥ 𝑁 ) ) |
| 10 | 4 9 | bitr2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( 𝑁 − 𝑀 ) ) ) |