This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| Assertion | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 3 | 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 4 | 1 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 5 | 1 | zred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 | 2 | nnred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 7 | 6 | rehalfcld | ⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
| 8 | 5 7 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ) |
| 9 | 2 | nnrpd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 10 | 8 9 | modcld | ⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℝ ) |
| 11 | 10 | recnd | ⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℂ ) |
| 12 | 7 | recnd | ⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℂ ) |
| 13 | 11 12 | subcld | ⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ∈ ℂ ) |
| 14 | 3 13 | eqeltrid | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 15 | 4 14 | nncand | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = 𝐵 ) |
| 16 | 4 14 | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 17 | 6 | recnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 18 | 2 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 19 | 16 17 18 | divcan1d | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) · 𝑀 ) = ( 𝐴 − 𝐵 ) ) |
| 20 | 3 | oveq2i | ⊢ ( 𝐴 − 𝐵 ) = ( 𝐴 − ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) |
| 21 | 4 11 12 | subsub3d | ⊢ ( 𝜑 → ( 𝐴 − ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) ) |
| 22 | 20 21 | eqtrid | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) / 𝑀 ) ) |
| 24 | moddifz | ⊢ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) / 𝑀 ) ∈ ℤ ) | |
| 25 | 8 9 24 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) / 𝑀 ) ∈ ℤ ) |
| 26 | 23 25 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) |
| 27 | 2 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 28 | 26 27 | zmulcld | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) · 𝑀 ) ∈ ℤ ) |
| 29 | 19 28 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 30 | 1 29 | zsubcld | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 − 𝐵 ) ) ∈ ℤ ) |
| 31 | 15 30 | eqeltrrd | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 32 | 31 26 | jca | ⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |