This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | ||
| 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | ||
| 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | ||
| 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | ||
| 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | ||
| 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | ||
| 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | ||
| 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | ||
| 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | ||
| Assertion | 4sqlem15 | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | |
| 4 | 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | |
| 6 | 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | |
| 7 | 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | |
| 8 | 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 9 | 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 10 | 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 11 | 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | |
| 12 | 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | |
| 13 | 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 14 | 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 15 | 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 16 | 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 17 | 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | |
| 18 | 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | |
| 19 | eluz2nn | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) | |
| 20 | 8 19 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 21 | 20 | nnred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 22 | 21 | resqcld | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℝ ) |
| 23 | 22 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℝ ) |
| 24 | 23 | rehalfcld | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℝ ) |
| 25 | 24 | recnd | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℂ ) |
| 26 | 9 20 13 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
| 27 | 26 | simpld | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 28 | zsqcl | ⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℤ ) | |
| 29 | 27 28 | syl | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 30 | 29 | zred | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 31 | 30 | recnd | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 32 | 10 20 14 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
| 33 | 32 | simpld | ⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 34 | zsqcl | ⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℤ ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℤ ) |
| 36 | 35 | zred | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℝ ) |
| 37 | 36 | recnd | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℂ ) |
| 38 | 25 25 31 37 | addsub4d | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) ) |
| 39 | 23 | recnd | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 40 | 39 | 2halvesd | ⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) = ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 41 | 40 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 42 | 38 41 | eqtr3d | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 44 | 22 | recnd | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 45 | 44 | 2halvesd | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) = ( 𝑀 ↑ 2 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) = ( 𝑀 ↑ 2 ) ) |
| 47 | 21 | recnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 48 | 47 | sqvald | ⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 50 | simpr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → 𝑅 = 𝑀 ) | |
| 51 | 17 50 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 𝑀 ) |
| 52 | 51 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) · 𝑀 ) = ( 𝑀 · 𝑀 ) ) |
| 53 | 30 36 | readdcld | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℝ ) |
| 54 | 11 20 15 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
| 55 | 54 | simpld | ⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 56 | zsqcl | ⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℤ ) | |
| 57 | 55 56 | syl | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℤ ) |
| 58 | 57 | zred | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℝ ) |
| 59 | 12 20 16 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
| 60 | 59 | simpld | ⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
| 61 | zsqcl | ⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℤ ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℤ ) |
| 63 | 62 | zred | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℝ ) |
| 64 | 58 63 | readdcld | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℝ ) |
| 65 | 53 64 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ) |
| 66 | 65 | recnd | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℂ ) |
| 67 | 20 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 68 | 66 47 67 | divcan1d | ⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) · 𝑀 ) = ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) · 𝑀 ) = ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 70 | 49 52 69 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = ( 𝑀 ↑ 2 ) ) |
| 71 | 46 70 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( 𝑀 ↑ 2 ) − ( 𝑀 ↑ 2 ) ) ) |
| 72 | 53 | recnd | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℂ ) |
| 73 | 64 | recnd | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℂ ) |
| 74 | 39 39 72 73 | addsub4d | ⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 76 | 44 | subidd | ⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) − ( 𝑀 ↑ 2 ) ) = 0 ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝑀 ↑ 2 ) − ( 𝑀 ↑ 2 ) ) = 0 ) |
| 78 | 71 75 77 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = 0 ) |
| 79 | 23 53 | resubcld | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∈ ℝ ) |
| 80 | 9 20 13 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 81 | 10 20 14 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 82 | 30 36 24 24 80 81 | le2addd | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 83 | 82 40 | breqtrd | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 84 | 23 53 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ↔ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 85 | 83 84 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 86 | 23 64 | resubcld | ⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ) |
| 87 | 11 20 15 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 88 | 12 20 16 | 4sqlem7 | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 89 | 58 63 24 24 87 88 | le2addd | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 90 | 89 40 | breqtrd | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 91 | 23 64 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ↔ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 92 | 90 91 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 93 | add20 | ⊢ ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = 0 ↔ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = 0 ∧ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ) ) ) | |
| 94 | 79 85 86 92 93 | syl22anc | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = 0 ↔ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = 0 ∧ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ) ) ) |
| 95 | 94 | biimpa | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = 0 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = 0 ∧ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ) ) |
| 96 | 78 95 | syldan | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = 0 ∧ ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ) ) |
| 97 | 96 | simpld | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = 0 ) |
| 98 | 43 97 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) = 0 ) |
| 99 | 24 30 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) ∈ ℝ ) |
| 100 | 24 30 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) ↔ ( 𝐸 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 101 | 80 100 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) ) |
| 102 | 24 36 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ∈ ℝ ) |
| 103 | 24 36 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ↔ ( 𝐹 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 104 | 81 103 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) |
| 105 | add20 | ⊢ ( ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) ) ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) ) → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) = 0 ↔ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ) ) | |
| 106 | 99 101 102 104 105 | syl22anc | ⊢ ( 𝜑 → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) = 0 ↔ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ) ) |
| 107 | 106 | biimpa | ⊢ ( ( 𝜑 ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) ) = 0 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ) |
| 108 | 98 107 | syldan | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ) |
| 109 | 58 | recnd | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℂ ) |
| 110 | 63 | recnd | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℂ ) |
| 111 | 25 25 109 110 | addsub4d | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) ) |
| 112 | 40 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 113 | 111 112 | eqtr3d | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 114 | 113 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 115 | 96 | simprd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ) |
| 116 | 114 115 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) = 0 ) |
| 117 | 24 58 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) ∈ ℝ ) |
| 118 | 24 58 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) ↔ ( 𝐺 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 119 | 87 118 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) ) |
| 120 | 24 63 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ∈ ℝ ) |
| 121 | 24 63 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ↔ ( 𝐻 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 122 | 88 121 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) |
| 123 | add20 | ⊢ ( ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) ) ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) ) → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) = 0 ↔ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) ) | |
| 124 | 117 119 120 122 123 | syl22anc | ⊢ ( 𝜑 → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) = 0 ↔ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 125 | 124 | biimpa | ⊢ ( ( 𝜑 ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) ) = 0 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 126 | 116 125 | syldan | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 127 | 108 126 | jca | ⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |