This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of dvds2add . (Contributed by SN, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvds2addd.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| dvds2addd.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvds2addd.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| dvds2addd.1 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑀 ) | ||
| dvds2addd.2 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑁 ) | ||
| Assertion | dvds2addd | ⊢ ( 𝜑 → 𝐾 ∥ ( 𝑀 + 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds2addd.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 2 | dvds2addd.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | dvds2addd.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | dvds2addd.1 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑀 ) | |
| 5 | dvds2addd.2 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑁 ) | |
| 6 | dvds2add | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ∥ ( 𝑀 + 𝑁 ) ) ) | |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ∥ ( 𝑀 + 𝑁 ) ) ) |
| 8 | 4 5 7 | mp2and | ⊢ ( 𝜑 → 𝐾 ∥ ( 𝑀 + 𝑁 ) ) |