This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sqlem10.5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) | ||
| Assertion | 4sqlem10 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 3 | 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 4 | 4sqlem10.5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℕ ) |
| 6 | 5 | nnzd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℤ ) |
| 7 | zsqcl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) ∈ ℤ ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℤ ) |
| 10 | 5 | nnred | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℝ ) |
| 11 | 10 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 / 2 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 / 2 ) ∈ ℂ ) |
| 13 | 12 | negnegd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → - - ( 𝑀 / 2 ) = ( 𝑀 / 2 ) ) |
| 14 | 1 2 3 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 16 | 15 | simpld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ ℤ ) |
| 17 | 16 | zred | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ ℝ ) |
| 18 | 1 2 3 | 4sqlem6 | ⊢ ( 𝜑 → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |
| 20 | 19 | simprd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 < ( 𝑀 / 2 ) ) |
| 21 | 17 20 | ltned | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ≠ ( 𝑀 / 2 ) ) |
| 22 | 21 | neneqd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝐵 = ( 𝑀 / 2 ) ) |
| 23 | 2cnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 2 ∈ ℂ ) | |
| 24 | 23 | sqvald | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 2 ↑ 2 ) = ( 2 · 2 ) ) |
| 25 | 24 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 26 | 5 | nncnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℂ ) |
| 27 | 2ne0 | ⊢ 2 ≠ 0 | |
| 28 | 27 | a1i | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 2 ≠ 0 ) |
| 29 | 26 23 28 | sqdivd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 30 | 26 | sqcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 31 | 30 23 23 28 28 | divdiv1d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 32 | 25 29 31 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 33 | 30 | halfcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 34 | 33 | halfcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℂ ) |
| 35 | 16 | zcnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ ℂ ) |
| 36 | 35 | sqcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 37 | 34 36 4 | subeq0d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
| 38 | 32 37 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ↑ 2 ) = ( ( 𝑀 / 2 ) ↑ 2 ) ) |
| 39 | sqeqor | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝑀 / 2 ) ∈ ℂ ) → ( ( 𝐵 ↑ 2 ) = ( ( 𝑀 / 2 ) ↑ 2 ) ↔ ( 𝐵 = ( 𝑀 / 2 ) ∨ 𝐵 = - ( 𝑀 / 2 ) ) ) ) | |
| 40 | 35 12 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐵 ↑ 2 ) = ( ( 𝑀 / 2 ) ↑ 2 ) ↔ ( 𝐵 = ( 𝑀 / 2 ) ∨ 𝐵 = - ( 𝑀 / 2 ) ) ) ) |
| 41 | 38 40 | mpbid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 = ( 𝑀 / 2 ) ∨ 𝐵 = - ( 𝑀 / 2 ) ) ) |
| 42 | 41 | ord | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝐵 = ( 𝑀 / 2 ) → 𝐵 = - ( 𝑀 / 2 ) ) ) |
| 43 | 22 42 | mpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 = - ( 𝑀 / 2 ) ) |
| 44 | 43 16 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → - ( 𝑀 / 2 ) ∈ ℤ ) |
| 45 | 44 | znegcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → - - ( 𝑀 / 2 ) ∈ ℤ ) |
| 46 | 13 45 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 / 2 ) ∈ ℤ ) |
| 47 | 9 46 | zaddcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ) |
| 48 | zsqcl | ⊢ ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ → ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ∈ ℤ ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ∈ ℤ ) |
| 50 | 47 6 | zmulcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ∈ ℤ ) |
| 51 | 47 | zred | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ) |
| 52 | 5 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℝ+ ) |
| 53 | 51 52 | modcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℝ ) |
| 54 | 53 | recnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℂ ) |
| 55 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ℂ ) | |
| 56 | df-neg | ⊢ - ( 𝑀 / 2 ) = ( 0 − ( 𝑀 / 2 ) ) | |
| 57 | 43 3 56 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( 0 − ( 𝑀 / 2 ) ) ) |
| 58 | 54 55 12 57 | subcan2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) = 0 ) |
| 59 | dvdsval3 | ⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) = 0 ) ) | |
| 60 | 5 47 59 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) = 0 ) ) |
| 61 | 58 60 | mpbird | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ) |
| 62 | dvdssq | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ) ) | |
| 63 | 6 47 62 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ) ) |
| 64 | 61 63 | mpbid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ) |
| 65 | 26 | sqvald | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 66 | 5 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ≠ 0 ) |
| 67 | dvdsmulcr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( ( 𝑀 · 𝑀 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ) ) | |
| 68 | 6 47 6 66 67 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 · 𝑀 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ) ) |
| 69 | 61 68 | mpbird | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 · 𝑀 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) |
| 70 | 65 69 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) |
| 71 | 8 49 50 64 70 | dvds2subd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) ) |
| 72 | 47 | zcnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℂ ) |
| 73 | 72 | sqvald | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 + ( 𝑀 / 2 ) ) ) ) |
| 74 | 73 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 + ( 𝑀 / 2 ) ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) ) |
| 75 | 72 72 26 | subdid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 + ( 𝑀 / 2 ) ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) ) |
| 76 | 26 | 2halvesd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) = 𝑀 ) |
| 77 | 76 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) |
| 78 | 9 | zcnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℂ ) |
| 79 | 78 12 12 | pnpcan2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) = ( 𝐴 − ( 𝑀 / 2 ) ) ) |
| 80 | 77 79 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) = ( 𝐴 − ( 𝑀 / 2 ) ) ) |
| 81 | 80 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 − ( 𝑀 / 2 ) ) ) ) |
| 82 | subsq | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 / 2 ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( ( 𝑀 / 2 ) ↑ 2 ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 − ( 𝑀 / 2 ) ) ) ) | |
| 83 | 78 12 82 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 ↑ 2 ) − ( ( 𝑀 / 2 ) ↑ 2 ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 − ( 𝑀 / 2 ) ) ) ) |
| 84 | 32 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 ↑ 2 ) − ( ( 𝑀 / 2 ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 85 | 81 83 84 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) = ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 86 | 74 75 85 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) = ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 87 | 71 86 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |