This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
||
| 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
||
| 4sq.7 | |- M = inf ( T , RR , < ) |
||
| 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
||
| 4sq.a | |- ( ph -> A e. ZZ ) |
||
| 4sq.b | |- ( ph -> B e. ZZ ) |
||
| 4sq.c | |- ( ph -> C e. ZZ ) |
||
| 4sq.d | |- ( ph -> D e. ZZ ) |
||
| 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
||
| 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
||
| Assertion | 4sqlem16 | |- ( ph -> ( R <_ M /\ ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
|
| 6 | 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
|
| 7 | 4sq.7 | |- M = inf ( T , RR , < ) |
|
| 8 | 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
|
| 9 | 4sq.a | |- ( ph -> A e. ZZ ) |
|
| 10 | 4sq.b | |- ( ph -> B e. ZZ ) |
|
| 11 | 4sq.c | |- ( ph -> C e. ZZ ) |
|
| 12 | 4sq.d | |- ( ph -> D e. ZZ ) |
|
| 13 | 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 14 | 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 15 | 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 16 | 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 17 | 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
|
| 18 | 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
|
| 19 | eluz2nn | |- ( M e. ( ZZ>= ` 2 ) -> M e. NN ) |
|
| 20 | 8 19 | syl | |- ( ph -> M e. NN ) |
| 21 | 9 20 13 | 4sqlem5 | |- ( ph -> ( E e. ZZ /\ ( ( A - E ) / M ) e. ZZ ) ) |
| 22 | 21 | simpld | |- ( ph -> E e. ZZ ) |
| 23 | zsqcl | |- ( E e. ZZ -> ( E ^ 2 ) e. ZZ ) |
|
| 24 | 22 23 | syl | |- ( ph -> ( E ^ 2 ) e. ZZ ) |
| 25 | 24 | zred | |- ( ph -> ( E ^ 2 ) e. RR ) |
| 26 | 10 20 14 | 4sqlem5 | |- ( ph -> ( F e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) ) |
| 27 | 26 | simpld | |- ( ph -> F e. ZZ ) |
| 28 | zsqcl | |- ( F e. ZZ -> ( F ^ 2 ) e. ZZ ) |
|
| 29 | 27 28 | syl | |- ( ph -> ( F ^ 2 ) e. ZZ ) |
| 30 | 29 | zred | |- ( ph -> ( F ^ 2 ) e. RR ) |
| 31 | 25 30 | readdcld | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. RR ) |
| 32 | 11 20 15 | 4sqlem5 | |- ( ph -> ( G e. ZZ /\ ( ( C - G ) / M ) e. ZZ ) ) |
| 33 | 32 | simpld | |- ( ph -> G e. ZZ ) |
| 34 | zsqcl | |- ( G e. ZZ -> ( G ^ 2 ) e. ZZ ) |
|
| 35 | 33 34 | syl | |- ( ph -> ( G ^ 2 ) e. ZZ ) |
| 36 | 35 | zred | |- ( ph -> ( G ^ 2 ) e. RR ) |
| 37 | 12 20 16 | 4sqlem5 | |- ( ph -> ( H e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) ) |
| 38 | 37 | simpld | |- ( ph -> H e. ZZ ) |
| 39 | zsqcl | |- ( H e. ZZ -> ( H ^ 2 ) e. ZZ ) |
|
| 40 | 38 39 | syl | |- ( ph -> ( H ^ 2 ) e. ZZ ) |
| 41 | 40 | zred | |- ( ph -> ( H ^ 2 ) e. RR ) |
| 42 | 36 41 | readdcld | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) e. RR ) |
| 43 | 20 | nnred | |- ( ph -> M e. RR ) |
| 44 | 43 | resqcld | |- ( ph -> ( M ^ 2 ) e. RR ) |
| 45 | 44 | rehalfcld | |- ( ph -> ( ( M ^ 2 ) / 2 ) e. RR ) |
| 46 | 45 | rehalfcld | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. RR ) |
| 47 | 9 20 13 | 4sqlem7 | |- ( ph -> ( E ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 48 | 10 20 14 | 4sqlem7 | |- ( ph -> ( F ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 49 | 25 30 46 46 47 48 | le2addd | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 50 | 45 | recnd | |- ( ph -> ( ( M ^ 2 ) / 2 ) e. CC ) |
| 51 | 50 | 2halvesd | |- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) = ( ( M ^ 2 ) / 2 ) ) |
| 52 | 49 51 | breqtrd | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
| 53 | 11 20 15 | 4sqlem7 | |- ( ph -> ( G ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 54 | 12 20 16 | 4sqlem7 | |- ( ph -> ( H ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 55 | 36 41 46 46 53 54 | le2addd | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 56 | 55 51 | breqtrd | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
| 57 | 31 42 45 45 52 56 | le2addd | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <_ ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) ) |
| 58 | 44 | recnd | |- ( ph -> ( M ^ 2 ) e. CC ) |
| 59 | 58 | 2halvesd | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) = ( M ^ 2 ) ) |
| 60 | 57 59 | breqtrd | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <_ ( M ^ 2 ) ) |
| 61 | 43 | recnd | |- ( ph -> M e. CC ) |
| 62 | 61 | sqvald | |- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
| 63 | 60 62 | breqtrd | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <_ ( M x. M ) ) |
| 64 | 31 42 | readdcld | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. RR ) |
| 65 | 20 | nngt0d | |- ( ph -> 0 < M ) |
| 66 | ledivmul | |- ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. RR /\ M e. RR /\ ( M e. RR /\ 0 < M ) ) -> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) <_ M <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <_ ( M x. M ) ) ) |
|
| 67 | 64 43 43 65 66 | syl112anc | |- ( ph -> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) <_ M <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <_ ( M x. M ) ) ) |
| 68 | 63 67 | mpbird | |- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) <_ M ) |
| 69 | 17 68 | eqbrtrid | |- ( ph -> R <_ M ) |
| 70 | simpr | |- ( ( ph /\ R = 0 ) -> R = 0 ) |
|
| 71 | 17 70 | eqtr3id | |- ( ( ph /\ R = 0 ) -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) = 0 ) |
| 72 | 64 | recnd | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. CC ) |
| 73 | 20 | nnne0d | |- ( ph -> M =/= 0 ) |
| 74 | 72 61 73 | diveq0ad | |- ( ph -> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) = 0 <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 ) ) |
| 75 | zsqcl2 | |- ( E e. ZZ -> ( E ^ 2 ) e. NN0 ) |
|
| 76 | 22 75 | syl | |- ( ph -> ( E ^ 2 ) e. NN0 ) |
| 77 | zsqcl2 | |- ( F e. ZZ -> ( F ^ 2 ) e. NN0 ) |
|
| 78 | 27 77 | syl | |- ( ph -> ( F ^ 2 ) e. NN0 ) |
| 79 | 76 78 | nn0addcld | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. NN0 ) |
| 80 | 79 | nn0ge0d | |- ( ph -> 0 <_ ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 81 | zsqcl2 | |- ( G e. ZZ -> ( G ^ 2 ) e. NN0 ) |
|
| 82 | 33 81 | syl | |- ( ph -> ( G ^ 2 ) e. NN0 ) |
| 83 | zsqcl2 | |- ( H e. ZZ -> ( H ^ 2 ) e. NN0 ) |
|
| 84 | 38 83 | syl | |- ( ph -> ( H ^ 2 ) e. NN0 ) |
| 85 | 82 84 | nn0addcld | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) e. NN0 ) |
| 86 | 85 | nn0ge0d | |- ( ph -> 0 <_ ( ( G ^ 2 ) + ( H ^ 2 ) ) ) |
| 87 | add20 | |- ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) e. RR /\ 0 <_ ( ( E ^ 2 ) + ( F ^ 2 ) ) ) /\ ( ( ( G ^ 2 ) + ( H ^ 2 ) ) e. RR /\ 0 <_ ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 /\ ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 ) ) ) |
|
| 88 | 31 80 42 86 87 | syl22anc | |- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 /\ ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 ) ) ) |
| 89 | 74 88 | bitrd | |- ( ph -> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) = 0 <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 /\ ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 ) ) ) |
| 90 | 89 | biimpa | |- ( ( ph /\ ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) = 0 ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 /\ ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 ) ) |
| 91 | 71 90 | syldan | |- ( ( ph /\ R = 0 ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 /\ ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 ) ) |
| 92 | 91 | simpld | |- ( ( ph /\ R = 0 ) -> ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 ) |
| 93 | 76 | nn0ge0d | |- ( ph -> 0 <_ ( E ^ 2 ) ) |
| 94 | 78 | nn0ge0d | |- ( ph -> 0 <_ ( F ^ 2 ) ) |
| 95 | add20 | |- ( ( ( ( E ^ 2 ) e. RR /\ 0 <_ ( E ^ 2 ) ) /\ ( ( F ^ 2 ) e. RR /\ 0 <_ ( F ^ 2 ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 <-> ( ( E ^ 2 ) = 0 /\ ( F ^ 2 ) = 0 ) ) ) |
|
| 96 | 25 93 30 94 95 | syl22anc | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 <-> ( ( E ^ 2 ) = 0 /\ ( F ^ 2 ) = 0 ) ) ) |
| 97 | 96 | biimpa | |- ( ( ph /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = 0 ) -> ( ( E ^ 2 ) = 0 /\ ( F ^ 2 ) = 0 ) ) |
| 98 | 92 97 | syldan | |- ( ( ph /\ R = 0 ) -> ( ( E ^ 2 ) = 0 /\ ( F ^ 2 ) = 0 ) ) |
| 99 | 98 | simpld | |- ( ( ph /\ R = 0 ) -> ( E ^ 2 ) = 0 ) |
| 100 | 9 20 13 99 | 4sqlem9 | |- ( ( ph /\ R = 0 ) -> ( M ^ 2 ) || ( A ^ 2 ) ) |
| 101 | 98 | simprd | |- ( ( ph /\ R = 0 ) -> ( F ^ 2 ) = 0 ) |
| 102 | 10 20 14 101 | 4sqlem9 | |- ( ( ph /\ R = 0 ) -> ( M ^ 2 ) || ( B ^ 2 ) ) |
| 103 | 20 | nnsqcld | |- ( ph -> ( M ^ 2 ) e. NN ) |
| 104 | 103 | nnzd | |- ( ph -> ( M ^ 2 ) e. ZZ ) |
| 105 | zsqcl | |- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
|
| 106 | 9 105 | syl | |- ( ph -> ( A ^ 2 ) e. ZZ ) |
| 107 | zsqcl | |- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
|
| 108 | 10 107 | syl | |- ( ph -> ( B ^ 2 ) e. ZZ ) |
| 109 | dvds2add | |- ( ( ( M ^ 2 ) e. ZZ /\ ( A ^ 2 ) e. ZZ /\ ( B ^ 2 ) e. ZZ ) -> ( ( ( M ^ 2 ) || ( A ^ 2 ) /\ ( M ^ 2 ) || ( B ^ 2 ) ) -> ( M ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
|
| 110 | 104 106 108 109 | syl3anc | |- ( ph -> ( ( ( M ^ 2 ) || ( A ^ 2 ) /\ ( M ^ 2 ) || ( B ^ 2 ) ) -> ( M ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| 111 | 110 | adantr | |- ( ( ph /\ R = 0 ) -> ( ( ( M ^ 2 ) || ( A ^ 2 ) /\ ( M ^ 2 ) || ( B ^ 2 ) ) -> ( M ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| 112 | 100 102 111 | mp2and | |- ( ( ph /\ R = 0 ) -> ( M ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 113 | 91 | simprd | |- ( ( ph /\ R = 0 ) -> ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 ) |
| 114 | 82 | nn0ge0d | |- ( ph -> 0 <_ ( G ^ 2 ) ) |
| 115 | 84 | nn0ge0d | |- ( ph -> 0 <_ ( H ^ 2 ) ) |
| 116 | add20 | |- ( ( ( ( G ^ 2 ) e. RR /\ 0 <_ ( G ^ 2 ) ) /\ ( ( H ^ 2 ) e. RR /\ 0 <_ ( H ^ 2 ) ) ) -> ( ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 <-> ( ( G ^ 2 ) = 0 /\ ( H ^ 2 ) = 0 ) ) ) |
|
| 117 | 36 114 41 115 116 | syl22anc | |- ( ph -> ( ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 <-> ( ( G ^ 2 ) = 0 /\ ( H ^ 2 ) = 0 ) ) ) |
| 118 | 117 | biimpa | |- ( ( ph /\ ( ( G ^ 2 ) + ( H ^ 2 ) ) = 0 ) -> ( ( G ^ 2 ) = 0 /\ ( H ^ 2 ) = 0 ) ) |
| 119 | 113 118 | syldan | |- ( ( ph /\ R = 0 ) -> ( ( G ^ 2 ) = 0 /\ ( H ^ 2 ) = 0 ) ) |
| 120 | 119 | simpld | |- ( ( ph /\ R = 0 ) -> ( G ^ 2 ) = 0 ) |
| 121 | 11 20 15 120 | 4sqlem9 | |- ( ( ph /\ R = 0 ) -> ( M ^ 2 ) || ( C ^ 2 ) ) |
| 122 | 119 | simprd | |- ( ( ph /\ R = 0 ) -> ( H ^ 2 ) = 0 ) |
| 123 | 12 20 16 122 | 4sqlem9 | |- ( ( ph /\ R = 0 ) -> ( M ^ 2 ) || ( D ^ 2 ) ) |
| 124 | zsqcl | |- ( C e. ZZ -> ( C ^ 2 ) e. ZZ ) |
|
| 125 | 11 124 | syl | |- ( ph -> ( C ^ 2 ) e. ZZ ) |
| 126 | zsqcl | |- ( D e. ZZ -> ( D ^ 2 ) e. ZZ ) |
|
| 127 | 12 126 | syl | |- ( ph -> ( D ^ 2 ) e. ZZ ) |
| 128 | dvds2add | |- ( ( ( M ^ 2 ) e. ZZ /\ ( C ^ 2 ) e. ZZ /\ ( D ^ 2 ) e. ZZ ) -> ( ( ( M ^ 2 ) || ( C ^ 2 ) /\ ( M ^ 2 ) || ( D ^ 2 ) ) -> ( M ^ 2 ) || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
|
| 129 | 104 125 127 128 | syl3anc | |- ( ph -> ( ( ( M ^ 2 ) || ( C ^ 2 ) /\ ( M ^ 2 ) || ( D ^ 2 ) ) -> ( M ^ 2 ) || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 130 | 129 | adantr | |- ( ( ph /\ R = 0 ) -> ( ( ( M ^ 2 ) || ( C ^ 2 ) /\ ( M ^ 2 ) || ( D ^ 2 ) ) -> ( M ^ 2 ) || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 131 | 121 123 130 | mp2and | |- ( ( ph /\ R = 0 ) -> ( M ^ 2 ) || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 132 | 106 108 | zaddcld | |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. ZZ ) |
| 133 | 125 127 | zaddcld | |- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) |
| 134 | dvds2add | |- ( ( ( M ^ 2 ) e. ZZ /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) e. ZZ /\ ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) -> ( ( ( M ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) /\ ( M ^ 2 ) || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) ) |
|
| 135 | 104 132 133 134 | syl3anc | |- ( ph -> ( ( ( M ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) /\ ( M ^ 2 ) || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) ) |
| 136 | 135 | adantr | |- ( ( ph /\ R = 0 ) -> ( ( ( M ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) /\ ( M ^ 2 ) || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) ) |
| 137 | 112 131 136 | mp2and | |- ( ( ph /\ R = 0 ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 138 | 104 | adantr | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) e. ZZ ) |
| 139 | 132 | adantr | |- ( ( ph /\ R = M ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. ZZ ) |
| 140 | 51 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) = ( ( M ^ 2 ) / 2 ) ) |
| 141 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 4sqlem15 | |- ( ( ph /\ R = M ) -> ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) /\ ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) ) |
| 142 | 141 | simpld | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) ) |
| 143 | 142 | simpld | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 ) |
| 144 | 46 | recnd | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. CC ) |
| 145 | 24 | zcnd | |- ( ph -> ( E ^ 2 ) e. CC ) |
| 146 | 144 145 | subeq0ad | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 <-> ( ( ( M ^ 2 ) / 2 ) / 2 ) = ( E ^ 2 ) ) ) |
| 147 | 146 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 <-> ( ( ( M ^ 2 ) / 2 ) / 2 ) = ( E ^ 2 ) ) ) |
| 148 | 143 147 | mpbid | |- ( ( ph /\ R = M ) -> ( ( ( M ^ 2 ) / 2 ) / 2 ) = ( E ^ 2 ) ) |
| 149 | 24 | adantr | |- ( ( ph /\ R = M ) -> ( E ^ 2 ) e. ZZ ) |
| 150 | 148 149 | eqeltrd | |- ( ( ph /\ R = M ) -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. ZZ ) |
| 151 | 150 150 | zaddcld | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) e. ZZ ) |
| 152 | 140 151 | eqeltrrd | |- ( ( ph /\ R = M ) -> ( ( M ^ 2 ) / 2 ) e. ZZ ) |
| 153 | 139 152 | zsubcld | |- ( ( ph /\ R = M ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) e. ZZ ) |
| 154 | 133 | adantr | |- ( ( ph /\ R = M ) -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) |
| 155 | 154 152 | zsubcld | |- ( ( ph /\ R = M ) -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) e. ZZ ) |
| 156 | 106 | adantr | |- ( ( ph /\ R = M ) -> ( A ^ 2 ) e. ZZ ) |
| 157 | 156 150 | zsubcld | |- ( ( ph /\ R = M ) -> ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) e. ZZ ) |
| 158 | 108 | adantr | |- ( ( ph /\ R = M ) -> ( B ^ 2 ) e. ZZ ) |
| 159 | 158 150 | zsubcld | |- ( ( ph /\ R = M ) -> ( ( B ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) e. ZZ ) |
| 160 | 9 20 13 143 | 4sqlem10 | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 161 | 142 | simprd | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) |
| 162 | 10 20 14 161 | 4sqlem10 | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( B ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 163 | 138 157 159 160 162 | dvds2addd | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( B ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) ) |
| 164 | 106 | zcnd | |- ( ph -> ( A ^ 2 ) e. CC ) |
| 165 | 108 | zcnd | |- ( ph -> ( B ^ 2 ) e. CC ) |
| 166 | 164 165 144 144 | addsub4d | |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( B ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) ) |
| 167 | 51 | oveq2d | |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 168 | 166 167 | eqtr3d | |- ( ph -> ( ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( B ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 169 | 168 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( B ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 170 | 163 169 | breqtrd | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 171 | 125 | adantr | |- ( ( ph /\ R = M ) -> ( C ^ 2 ) e. ZZ ) |
| 172 | 171 150 | zsubcld | |- ( ( ph /\ R = M ) -> ( ( C ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) e. ZZ ) |
| 173 | 127 | adantr | |- ( ( ph /\ R = M ) -> ( D ^ 2 ) e. ZZ ) |
| 174 | 173 150 | zsubcld | |- ( ( ph /\ R = M ) -> ( ( D ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) e. ZZ ) |
| 175 | 141 | simprd | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) |
| 176 | 175 | simpld | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 ) |
| 177 | 11 20 15 176 | 4sqlem10 | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( C ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 178 | 175 | simprd | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) |
| 179 | 12 20 16 178 | 4sqlem10 | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( D ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 180 | 138 172 174 177 179 | dvds2addd | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( ( C ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( D ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) ) |
| 181 | 125 | zcnd | |- ( ph -> ( C ^ 2 ) e. CC ) |
| 182 | 127 | zcnd | |- ( ph -> ( D ^ 2 ) e. CC ) |
| 183 | 181 182 144 144 | addsub4d | |- ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( C ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( D ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) ) |
| 184 | 51 | oveq2d | |- ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 185 | 183 184 | eqtr3d | |- ( ph -> ( ( ( C ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( D ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 186 | 185 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( C ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) + ( ( D ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) = ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 187 | 180 186 | breqtrd | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) |
| 188 | 138 153 155 170 187 | dvds2addd | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) + ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) ) |
| 189 | 132 | zcnd | |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. CC ) |
| 190 | 133 | zcnd | |- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. CC ) |
| 191 | 189 190 50 50 | addsub4d | |- ( ph -> ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) + ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) ) |
| 192 | 59 | oveq2d | |- ( ph -> ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( M ^ 2 ) ) ) |
| 193 | 191 192 | eqtr3d | |- ( ph -> ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) + ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( M ^ 2 ) ) ) |
| 194 | 193 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) + ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( M ^ 2 ) / 2 ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( M ^ 2 ) ) ) |
| 195 | 188 194 | breqtrd | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( M ^ 2 ) ) ) |
| 196 | 132 133 | zaddcld | |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) e. ZZ ) |
| 197 | 196 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) e. ZZ ) |
| 198 | dvdssubr | |- ( ( ( M ^ 2 ) e. ZZ /\ ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) e. ZZ ) -> ( ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) <-> ( M ^ 2 ) || ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( M ^ 2 ) ) ) ) |
|
| 199 | 138 197 198 | syl2anc | |- ( ( ph /\ R = M ) -> ( ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) <-> ( M ^ 2 ) || ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( M ^ 2 ) ) ) ) |
| 200 | 195 199 | mpbird | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 201 | 137 200 | jaodan | |- ( ( ph /\ ( R = 0 \/ R = M ) ) -> ( M ^ 2 ) || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 202 | 18 | adantr | |- ( ( ph /\ ( R = 0 \/ R = M ) ) -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 203 | 201 202 | breqtrrd | |- ( ( ph /\ ( R = 0 \/ R = M ) ) -> ( M ^ 2 ) || ( M x. P ) ) |
| 204 | 203 | ex | |- ( ph -> ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) |
| 205 | 69 204 | jca | |- ( ph -> ( R <_ M /\ ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) ) |