This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2ndcomap.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 2ndcomap.3 | ⊢ ( 𝜑 → 𝐽 ∈ 2ndω ) | ||
| 2ndcomap.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| 2ndcomap.6 | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) | ||
| 2ndcomap.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) | ||
| Assertion | 2ndcomap | ⊢ ( 𝜑 → 𝐾 ∈ 2ndω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndcomap.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 2 | 2ndcomap.3 | ⊢ ( 𝜑 → 𝐽 ∈ 2ndω ) | |
| 3 | 2ndcomap.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | 2ndcomap.6 | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) | |
| 5 | 2ndcomap.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) | |
| 6 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝐾 ∈ Top ) |
| 9 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝜑 ) | |
| 10 | bastg | ⊢ ( 𝑏 ∈ TopBases → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) | |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) |
| 12 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ 𝑏 ) = 𝐽 ) | |
| 13 | 11 12 | sseqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ⊆ 𝐽 ) |
| 14 | 13 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ 𝐽 ) |
| 15 | 9 14 5 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
| 16 | 15 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 ⟶ 𝐾 ) |
| 17 | 16 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐾 ) |
| 18 | elunii | ⊢ ( ( 𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾 ) → 𝑧 ∈ ∪ 𝐾 ) | |
| 19 | 18 1 | eleqtrrdi | ⊢ ( ( 𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾 ) → 𝑧 ∈ 𝑌 ) |
| 20 | 19 | ancoms | ⊢ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) → 𝑧 ∈ 𝑌 ) |
| 21 | 20 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝑧 ∈ 𝑌 ) |
| 22 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ran 𝐹 = 𝑌 ) |
| 23 | 21 22 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝑧 ∈ ran 𝐹 ) |
| 24 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 25 | 24 1 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 27 | 26 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 28 | ffn | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → 𝐹 Fn ∪ 𝐽 ) | |
| 29 | fvelrnb | ⊢ ( 𝐹 Fn ∪ 𝐽 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) | |
| 30 | 27 28 29 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) |
| 31 | 23 30 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
| 32 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 33 | simprll | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑘 ∈ 𝐾 ) | |
| 34 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑘 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑘 ) ∈ 𝐽 ) | |
| 35 | 32 33 34 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑘 ) ∈ 𝐽 ) |
| 36 | 12 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( topGen ‘ 𝑏 ) = 𝐽 ) |
| 37 | 35 36 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑘 ) ∈ ( topGen ‘ 𝑏 ) ) |
| 38 | simprrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑡 ∈ ∪ 𝐽 ) | |
| 39 | simprrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝐹 ‘ 𝑡 ) = 𝑧 ) | |
| 40 | simprlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑧 ∈ 𝑘 ) | |
| 41 | 39 40 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) |
| 42 | 27 | ffnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝐹 Fn ∪ 𝐽 ) |
| 43 | 42 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝐹 Fn ∪ 𝐽 ) |
| 44 | elpreima | ⊢ ( 𝐹 Fn ∪ 𝐽 → ( 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ↔ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ↔ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) ) ) |
| 46 | 38 41 45 | mpbir2and | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ) |
| 47 | tg2 | ⊢ ( ( ( ◡ 𝐹 “ 𝑘 ) ∈ ( topGen ‘ 𝑏 ) ∧ 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ) → ∃ 𝑚 ∈ 𝑏 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) | |
| 48 | 37 46 47 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ∃ 𝑚 ∈ 𝑏 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) |
| 49 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ∈ 𝑏 ) | |
| 50 | eqid | ⊢ ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑚 ) | |
| 51 | imaeq2 | ⊢ ( 𝑥 = 𝑚 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑚 ) ) | |
| 52 | 51 | rspceeqv | ⊢ ( ( 𝑚 ∈ 𝑏 ∧ ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑚 ) ) → ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) |
| 53 | 49 50 52 | sylancl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) |
| 54 | 43 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝐹 Fn ∪ 𝐽 ) |
| 55 | fnfun | ⊢ ( 𝐹 Fn ∪ 𝐽 → Fun 𝐹 ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → Fun 𝐹 ) |
| 57 | simprrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) | |
| 58 | funimass2 | ⊢ ( ( Fun 𝐹 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) → ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) | |
| 59 | 56 57 58 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) |
| 60 | vex | ⊢ 𝑘 ∈ V | |
| 61 | ssexg | ⊢ ( ( ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ∧ 𝑘 ∈ V ) → ( 𝐹 “ 𝑚 ) ∈ V ) | |
| 62 | 59 60 61 | sylancl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ∈ V ) |
| 63 | eqid | ⊢ ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) | |
| 64 | 63 | elrnmpt | ⊢ ( ( 𝐹 “ 𝑚 ) ∈ V → ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 65 | 62 64 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 66 | 53 65 | mpbird | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 67 | 39 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
| 68 | simprrl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑡 ∈ 𝑚 ) | |
| 69 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑘 ) ⊆ dom 𝐹 | |
| 70 | 57 69 | sstrdi | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ⊆ dom 𝐹 ) |
| 71 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ 𝑚 ⊆ dom 𝐹 ) → ( 𝑡 ∈ 𝑚 → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) ) | |
| 72 | 56 70 71 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝑡 ∈ 𝑚 → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) ) |
| 73 | 68 72 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) |
| 74 | 67 73 | eqeltrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑧 ∈ ( 𝐹 “ 𝑚 ) ) |
| 75 | eleq2 | ⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝐹 “ 𝑚 ) ) ) | |
| 76 | sseq1 | ⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( 𝑤 ⊆ 𝑘 ↔ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) | |
| 77 | 75 76 | anbi12d | ⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ↔ ( 𝑧 ∈ ( 𝐹 “ 𝑚 ) ∧ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) ) |
| 78 | 77 | rspcev | ⊢ ( ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∧ ( 𝑧 ∈ ( 𝐹 “ 𝑚 ) ∧ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 79 | 66 74 59 78 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 80 | 48 79 | rexlimddv | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 81 | 80 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 82 | 31 81 | rexlimddv | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 83 | 82 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ∀ 𝑘 ∈ 𝐾 ∀ 𝑧 ∈ 𝑘 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 84 | basgen2 | ⊢ ( ( 𝐾 ∈ Top ∧ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐾 ∧ ∀ 𝑘 ∈ 𝐾 ∀ 𝑧 ∈ 𝑘 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) = 𝐾 ) | |
| 85 | 8 17 83 84 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) = 𝐾 ) |
| 86 | 85 8 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ Top ) |
| 87 | tgclb | ⊢ ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ↔ ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ Top ) | |
| 88 | 86 87 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ) |
| 89 | omelon | ⊢ ω ∈ On | |
| 90 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ≼ ω ) | |
| 91 | ondomen | ⊢ ( ( ω ∈ On ∧ 𝑏 ≼ ω ) → 𝑏 ∈ dom card ) | |
| 92 | 89 90 91 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ∈ dom card ) |
| 93 | 16 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) Fn 𝑏 ) |
| 94 | dffn4 | ⊢ ( ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) Fn 𝑏 ↔ ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) | |
| 95 | 93 94 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 96 | fodomnum | ⊢ ( 𝑏 ∈ dom card → ( ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ) ) | |
| 97 | 92 95 96 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ) |
| 98 | domtr | ⊢ ( ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ∧ 𝑏 ≼ ω ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) | |
| 99 | 97 90 98 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) |
| 100 | 2ndci | ⊢ ( ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ∧ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ 2ndω ) | |
| 101 | 88 99 100 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ 2ndω ) |
| 102 | 85 101 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝐾 ∈ 2ndω ) |
| 103 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) | |
| 104 | 2 103 | sylib | ⊢ ( 𝜑 → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) |
| 105 | 102 104 | r19.29a | ⊢ ( 𝜑 → 𝐾 ∈ 2ndω ) |