This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2ndcomap.2 | |- Y = U. K |
|
| 2ndcomap.3 | |- ( ph -> J e. 2ndc ) |
||
| 2ndcomap.5 | |- ( ph -> F e. ( J Cn K ) ) |
||
| 2ndcomap.6 | |- ( ph -> ran F = Y ) |
||
| 2ndcomap.7 | |- ( ( ph /\ x e. J ) -> ( F " x ) e. K ) |
||
| Assertion | 2ndcomap | |- ( ph -> K e. 2ndc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndcomap.2 | |- Y = U. K |
|
| 2 | 2ndcomap.3 | |- ( ph -> J e. 2ndc ) |
|
| 3 | 2ndcomap.5 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 4 | 2ndcomap.6 | |- ( ph -> ran F = Y ) |
|
| 5 | 2ndcomap.7 | |- ( ( ph /\ x e. J ) -> ( F " x ) e. K ) |
|
| 6 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 7 | 3 6 | syl | |- ( ph -> K e. Top ) |
| 8 | 7 | ad2antrr | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> K e. Top ) |
| 9 | simplll | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> ph ) |
|
| 10 | bastg | |- ( b e. TopBases -> b C_ ( topGen ` b ) ) |
|
| 11 | 10 | ad2antlr | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b C_ ( topGen ` b ) ) |
| 12 | simprr | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` b ) = J ) |
|
| 13 | 11 12 | sseqtrd | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b C_ J ) |
| 14 | 13 | sselda | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> x e. J ) |
| 15 | 9 14 5 | syl2anc | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> ( F " x ) e. K ) |
| 16 | 15 | fmpttd | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) : b --> K ) |
| 17 | 16 | frnd | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) C_ K ) |
| 18 | elunii | |- ( ( z e. k /\ k e. K ) -> z e. U. K ) |
|
| 19 | 18 1 | eleqtrrdi | |- ( ( z e. k /\ k e. K ) -> z e. Y ) |
| 20 | 19 | ancoms | |- ( ( k e. K /\ z e. k ) -> z e. Y ) |
| 21 | 20 | adantl | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> z e. Y ) |
| 22 | 4 | ad3antrrr | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> ran F = Y ) |
| 23 | 21 22 | eleqtrrd | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> z e. ran F ) |
| 24 | eqid | |- U. J = U. J |
|
| 25 | 24 1 | cnf | |- ( F e. ( J Cn K ) -> F : U. J --> Y ) |
| 26 | 3 25 | syl | |- ( ph -> F : U. J --> Y ) |
| 27 | 26 | ad3antrrr | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> F : U. J --> Y ) |
| 28 | ffn | |- ( F : U. J --> Y -> F Fn U. J ) |
|
| 29 | fvelrnb | |- ( F Fn U. J -> ( z e. ran F <-> E. t e. U. J ( F ` t ) = z ) ) |
|
| 30 | 27 28 29 | 3syl | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> ( z e. ran F <-> E. t e. U. J ( F ` t ) = z ) ) |
| 31 | 23 30 | mpbid | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> E. t e. U. J ( F ` t ) = z ) |
| 32 | 3 | ad3antrrr | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> F e. ( J Cn K ) ) |
| 33 | simprll | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> k e. K ) |
|
| 34 | cnima | |- ( ( F e. ( J Cn K ) /\ k e. K ) -> ( `' F " k ) e. J ) |
|
| 35 | 32 33 34 | syl2anc | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( `' F " k ) e. J ) |
| 36 | 12 | adantr | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( topGen ` b ) = J ) |
| 37 | 35 36 | eleqtrrd | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( `' F " k ) e. ( topGen ` b ) ) |
| 38 | simprrl | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> t e. U. J ) |
|
| 39 | simprrr | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( F ` t ) = z ) |
|
| 40 | simprlr | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> z e. k ) |
|
| 41 | 39 40 | eqeltrd | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( F ` t ) e. k ) |
| 42 | 27 | ffnd | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> F Fn U. J ) |
| 43 | 42 | adantrr | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> F Fn U. J ) |
| 44 | elpreima | |- ( F Fn U. J -> ( t e. ( `' F " k ) <-> ( t e. U. J /\ ( F ` t ) e. k ) ) ) |
|
| 45 | 43 44 | syl | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( t e. ( `' F " k ) <-> ( t e. U. J /\ ( F ` t ) e. k ) ) ) |
| 46 | 38 41 45 | mpbir2and | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> t e. ( `' F " k ) ) |
| 47 | tg2 | |- ( ( ( `' F " k ) e. ( topGen ` b ) /\ t e. ( `' F " k ) ) -> E. m e. b ( t e. m /\ m C_ ( `' F " k ) ) ) |
|
| 48 | 37 46 47 | syl2anc | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> E. m e. b ( t e. m /\ m C_ ( `' F " k ) ) ) |
| 49 | simprl | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m e. b ) |
|
| 50 | eqid | |- ( F " m ) = ( F " m ) |
|
| 51 | imaeq2 | |- ( x = m -> ( F " x ) = ( F " m ) ) |
|
| 52 | 51 | rspceeqv | |- ( ( m e. b /\ ( F " m ) = ( F " m ) ) -> E. x e. b ( F " m ) = ( F " x ) ) |
| 53 | 49 50 52 | sylancl | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> E. x e. b ( F " m ) = ( F " x ) ) |
| 54 | 43 | adantr | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> F Fn U. J ) |
| 55 | fnfun | |- ( F Fn U. J -> Fun F ) |
|
| 56 | 54 55 | syl | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> Fun F ) |
| 57 | simprrr | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m C_ ( `' F " k ) ) |
|
| 58 | funimass2 | |- ( ( Fun F /\ m C_ ( `' F " k ) ) -> ( F " m ) C_ k ) |
|
| 59 | 56 57 58 | syl2anc | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) C_ k ) |
| 60 | vex | |- k e. _V |
|
| 61 | ssexg | |- ( ( ( F " m ) C_ k /\ k e. _V ) -> ( F " m ) e. _V ) |
|
| 62 | 59 60 61 | sylancl | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) e. _V ) |
| 63 | eqid | |- ( x e. b |-> ( F " x ) ) = ( x e. b |-> ( F " x ) ) |
|
| 64 | 63 | elrnmpt | |- ( ( F " m ) e. _V -> ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) <-> E. x e. b ( F " m ) = ( F " x ) ) ) |
| 65 | 62 64 | syl | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) <-> E. x e. b ( F " m ) = ( F " x ) ) ) |
| 66 | 53 65 | mpbird | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) e. ran ( x e. b |-> ( F " x ) ) ) |
| 67 | 39 | adantr | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F ` t ) = z ) |
| 68 | simprrl | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> t e. m ) |
|
| 69 | cnvimass | |- ( `' F " k ) C_ dom F |
|
| 70 | 57 69 | sstrdi | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m C_ dom F ) |
| 71 | funfvima2 | |- ( ( Fun F /\ m C_ dom F ) -> ( t e. m -> ( F ` t ) e. ( F " m ) ) ) |
|
| 72 | 56 70 71 | syl2anc | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( t e. m -> ( F ` t ) e. ( F " m ) ) ) |
| 73 | 68 72 | mpd | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F ` t ) e. ( F " m ) ) |
| 74 | 67 73 | eqeltrrd | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> z e. ( F " m ) ) |
| 75 | eleq2 | |- ( w = ( F " m ) -> ( z e. w <-> z e. ( F " m ) ) ) |
|
| 76 | sseq1 | |- ( w = ( F " m ) -> ( w C_ k <-> ( F " m ) C_ k ) ) |
|
| 77 | 75 76 | anbi12d | |- ( w = ( F " m ) -> ( ( z e. w /\ w C_ k ) <-> ( z e. ( F " m ) /\ ( F " m ) C_ k ) ) ) |
| 78 | 77 | rspcev | |- ( ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) /\ ( z e. ( F " m ) /\ ( F " m ) C_ k ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 79 | 66 74 59 78 | syl12anc | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 80 | 48 79 | rexlimddv | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 81 | 80 | anassrs | |- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 82 | 31 81 | rexlimddv | |- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 83 | 82 | ralrimivva | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> A. k e. K A. z e. k E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 84 | basgen2 | |- ( ( K e. Top /\ ran ( x e. b |-> ( F " x ) ) C_ K /\ A. k e. K A. z e. k E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) = K ) |
|
| 85 | 8 17 83 84 | syl3anc | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) = K ) |
| 86 | 85 8 | eqeltrd | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. Top ) |
| 87 | tgclb | |- ( ran ( x e. b |-> ( F " x ) ) e. TopBases <-> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. Top ) |
|
| 88 | 86 87 | sylibr | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) e. TopBases ) |
| 89 | omelon | |- _om e. On |
|
| 90 | simprl | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b ~<_ _om ) |
|
| 91 | ondomen | |- ( ( _om e. On /\ b ~<_ _om ) -> b e. dom card ) |
|
| 92 | 89 90 91 | sylancr | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b e. dom card ) |
| 93 | 16 | ffnd | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) Fn b ) |
| 94 | dffn4 | |- ( ( x e. b |-> ( F " x ) ) Fn b <-> ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) ) |
|
| 95 | 93 94 | sylib | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) ) |
| 96 | fodomnum | |- ( b e. dom card -> ( ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ b ) ) |
|
| 97 | 92 95 96 | sylc | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ b ) |
| 98 | domtr | |- ( ( ran ( x e. b |-> ( F " x ) ) ~<_ b /\ b ~<_ _om ) -> ran ( x e. b |-> ( F " x ) ) ~<_ _om ) |
|
| 99 | 97 90 98 | syl2anc | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ _om ) |
| 100 | 2ndci | |- ( ( ran ( x e. b |-> ( F " x ) ) e. TopBases /\ ran ( x e. b |-> ( F " x ) ) ~<_ _om ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. 2ndc ) |
|
| 101 | 88 99 100 | syl2anc | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. 2ndc ) |
| 102 | 85 101 | eqeltrrd | |- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> K e. 2ndc ) |
| 103 | is2ndc | |- ( J e. 2ndc <-> E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = J ) ) |
|
| 104 | 2 103 | sylib | |- ( ph -> E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = J ) ) |
| 105 | 102 104 | r19.29a | |- ( ph -> K e. 2ndc ) |