This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2ndcsep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | 2ndcsep | ⊢ ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndcsep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) | |
| 3 | vex | ⊢ 𝑏 ∈ V | |
| 4 | difss | ⊢ ( 𝑏 ∖ { ∅ } ) ⊆ 𝑏 | |
| 5 | ssdomg | ⊢ ( 𝑏 ∈ V → ( ( 𝑏 ∖ { ∅ } ) ⊆ 𝑏 → ( 𝑏 ∖ { ∅ } ) ≼ 𝑏 ) ) | |
| 6 | 3 4 5 | mp2 | ⊢ ( 𝑏 ∖ { ∅ } ) ≼ 𝑏 |
| 7 | simpr | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → 𝑏 ≼ ω ) | |
| 8 | domtr | ⊢ ( ( ( 𝑏 ∖ { ∅ } ) ≼ 𝑏 ∧ 𝑏 ≼ ω ) → ( 𝑏 ∖ { ∅ } ) ≼ ω ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ( 𝑏 ∖ { ∅ } ) ≼ ω ) |
| 10 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ↔ ( 𝑦 ∈ 𝑏 ∧ 𝑦 ≠ ∅ ) ) | |
| 11 | n0 | ⊢ ( 𝑦 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑦 ) | |
| 12 | elunii | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑏 ) → 𝑧 ∈ ∪ 𝑏 ) | |
| 13 | simpl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑏 ) → 𝑧 ∈ 𝑦 ) | |
| 14 | 12 13 | jca | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑏 ) → ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) |
| 15 | 14 | expcom | ⊢ ( 𝑦 ∈ 𝑏 → ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 16 | 15 | eximdv | ⊢ ( 𝑦 ∈ 𝑏 → ( ∃ 𝑧 𝑧 ∈ 𝑦 → ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝑦 ∈ 𝑏 ∧ ∃ 𝑧 𝑧 ∈ 𝑦 ) → ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) |
| 18 | df-rex | ⊢ ( ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ↔ ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝑦 ∈ 𝑏 ∧ ∃ 𝑧 𝑧 ∈ 𝑦 ) → ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) |
| 20 | 11 19 | sylan2b | ⊢ ( ( 𝑦 ∈ 𝑏 ∧ 𝑦 ≠ ∅ ) → ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) |
| 21 | 10 20 | sylbi | ⊢ ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) |
| 22 | 21 | rgen | ⊢ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 |
| 23 | vuniex | ⊢ ∪ 𝑏 ∈ V | |
| 24 | eleq1 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( 𝑧 ∈ 𝑦 ↔ ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) | |
| 25 | 23 24 | axcc4dom | ⊢ ( ( ( 𝑏 ∖ { ∅ } ) ≼ ω ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) → ∃ 𝑓 ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 26 | 9 22 25 | sylancl | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ∃ 𝑓 ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 27 | frn | ⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ran 𝑓 ⊆ ∪ 𝑏 ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ⊆ ∪ 𝑏 ) |
| 29 | vex | ⊢ 𝑓 ∈ V | |
| 30 | 29 | rnex | ⊢ ran 𝑓 ∈ V |
| 31 | 30 | elpw | ⊢ ( ran 𝑓 ∈ 𝒫 ∪ 𝑏 ↔ ran 𝑓 ⊆ ∪ 𝑏 ) |
| 32 | 28 31 | sylibr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ∈ 𝒫 ∪ 𝑏 ) |
| 33 | omelon | ⊢ ω ∈ On | |
| 34 | 7 | adantr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑏 ≼ ω ) |
| 35 | ondomen | ⊢ ( ( ω ∈ On ∧ 𝑏 ≼ ω ) → 𝑏 ∈ dom card ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑏 ∈ dom card ) |
| 37 | ssnum | ⊢ ( ( 𝑏 ∈ dom card ∧ ( 𝑏 ∖ { ∅ } ) ⊆ 𝑏 ) → ( 𝑏 ∖ { ∅ } ) ∈ dom card ) | |
| 38 | 36 4 37 | sylancl | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( 𝑏 ∖ { ∅ } ) ∈ dom card ) |
| 39 | ffn | ⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ) | |
| 40 | 39 | ad2antrl | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ) |
| 41 | dffn4 | ⊢ ( 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ↔ 𝑓 : ( 𝑏 ∖ { ∅ } ) –onto→ ran 𝑓 ) | |
| 42 | 40 41 | sylib | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑓 : ( 𝑏 ∖ { ∅ } ) –onto→ ran 𝑓 ) |
| 43 | fodomnum | ⊢ ( ( 𝑏 ∖ { ∅ } ) ∈ dom card → ( 𝑓 : ( 𝑏 ∖ { ∅ } ) –onto→ ran 𝑓 → ran 𝑓 ≼ ( 𝑏 ∖ { ∅ } ) ) ) | |
| 44 | 38 42 43 | sylc | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ≼ ( 𝑏 ∖ { ∅ } ) ) |
| 45 | 9 | adantr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( 𝑏 ∖ { ∅ } ) ≼ ω ) |
| 46 | domtr | ⊢ ( ( ran 𝑓 ≼ ( 𝑏 ∖ { ∅ } ) ∧ ( 𝑏 ∖ { ∅ } ) ≼ ω ) → ran 𝑓 ≼ ω ) | |
| 47 | 44 45 46 | syl2anc | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ≼ ω ) |
| 48 | tgcl | ⊢ ( 𝑏 ∈ TopBases → ( topGen ‘ 𝑏 ) ∈ Top ) | |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( topGen ‘ 𝑏 ) ∈ Top ) |
| 50 | unitg | ⊢ ( 𝑏 ∈ V → ∪ ( topGen ‘ 𝑏 ) = ∪ 𝑏 ) | |
| 51 | 50 | elv | ⊢ ∪ ( topGen ‘ 𝑏 ) = ∪ 𝑏 |
| 52 | 51 | eqcomi | ⊢ ∪ 𝑏 = ∪ ( topGen ‘ 𝑏 ) |
| 53 | 52 | clsss3 | ⊢ ( ( ( topGen ‘ 𝑏 ) ∈ Top ∧ ran 𝑓 ⊆ ∪ 𝑏 ) → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ⊆ ∪ 𝑏 ) |
| 54 | 49 28 53 | syl2anc | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ⊆ ∪ 𝑏 ) |
| 55 | ne0i | ⊢ ( 𝑥 ∈ 𝑦 → 𝑦 ≠ ∅ ) | |
| 56 | 55 | anim2i | ⊢ ( ( 𝑦 ∈ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 ∈ 𝑏 ∧ 𝑦 ≠ ∅ ) ) |
| 57 | 56 10 | sylibr | ⊢ ( ( 𝑦 ∈ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) |
| 58 | fnfvelrn | ⊢ ( ( 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ∧ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 ) | |
| 59 | 39 58 | sylan | ⊢ ( ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 ) |
| 60 | inelcm | ⊢ ( ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ∧ ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 ) → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) | |
| 61 | 60 | expcom | ⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 62 | 59 61 | syl | ⊢ ( ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 63 | 62 | ex | ⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 64 | 63 | a2d | ⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 65 | 57 64 | syl7 | ⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ( ( 𝑦 ∈ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 66 | 65 | exp4a | ⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ( 𝑦 ∈ 𝑏 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) ) |
| 67 | 66 | ralimdv2 | ⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 68 | 67 | imp | ⊢ ( ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 69 | 68 | ad2antlr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 70 | eqidd | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ( topGen ‘ 𝑏 ) = ( topGen ‘ 𝑏 ) ) | |
| 71 | 52 | a1i | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ∪ 𝑏 = ∪ ( topGen ‘ 𝑏 ) ) |
| 72 | simplll | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → 𝑏 ∈ TopBases ) | |
| 73 | 28 | adantr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ran 𝑓 ⊆ ∪ 𝑏 ) |
| 74 | simpr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → 𝑥 ∈ ∪ 𝑏 ) | |
| 75 | 70 71 72 73 74 | elcls3 | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ( 𝑥 ∈ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ↔ ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 76 | 69 75 | mpbird | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → 𝑥 ∈ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ) |
| 77 | 54 76 | eqelssd | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) |
| 78 | breq1 | ⊢ ( 𝑥 = ran 𝑓 → ( 𝑥 ≼ ω ↔ ran 𝑓 ≼ ω ) ) | |
| 79 | fveqeq2 | ⊢ ( 𝑥 = ran 𝑓 → ( ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ↔ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) ) | |
| 80 | 78 79 | anbi12d | ⊢ ( 𝑥 = ran 𝑓 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ↔ ( ran 𝑓 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) ) ) |
| 81 | 80 | rspcev | ⊢ ( ( ran 𝑓 ∈ 𝒫 ∪ 𝑏 ∧ ( ran 𝑓 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) ) → ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ) |
| 82 | 32 47 77 81 | syl12anc | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ) |
| 83 | 26 82 | exlimddv | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ) |
| 84 | unieq | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ∪ ( topGen ‘ 𝑏 ) = ∪ 𝐽 ) | |
| 85 | 84 52 1 | 3eqtr4g | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ∪ 𝑏 = 𝑋 ) |
| 86 | 85 | pweqd | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → 𝒫 ∪ 𝑏 = 𝒫 𝑋 ) |
| 87 | fveq2 | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( cls ‘ ( topGen ‘ 𝑏 ) ) = ( cls ‘ 𝐽 ) ) | |
| 88 | 87 | fveq1d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 89 | 88 85 | eqeq12d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |
| 90 | 89 | anbi2d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ↔ ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 91 | 86 90 | rexeqbidv | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 92 | 83 91 | syl5ibcom | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ( ( topGen ‘ 𝑏 ) = 𝐽 → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 93 | 92 | impr | ⊢ ( ( 𝑏 ∈ TopBases ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |
| 94 | 93 | rexlimiva | ⊢ ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |
| 95 | 2 94 | sylbi | ⊢ ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |