This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping X --> Y , where X is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence f ( n ) converging to x , its image under F converges to F ( x ) . (Contributed by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1stccnp.1 | ⊢ ( 𝜑 → 𝐽 ∈ 1stω ) | |
| 1stccnp.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| 1stccnp.3 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| 1stccn.7 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | ||
| Assertion | 1stccn | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stccnp.1 | ⊢ ( 𝜑 → 𝐽 ∈ 1stω ) | |
| 2 | 1stccnp.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | 1stccnp.3 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 4 | 1stccn.7 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 5 | cncnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) | |
| 6 | 2 3 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) |
| 7 | 4 6 | mpbirand | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ 1stω ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 13 | 9 10 11 12 | 1stccnp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 14 | 8 13 | mpbirand | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 15 | 14 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 16 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) | |
| 17 | impexp | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 18 | 17 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑓 : ℕ ⟶ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 19 | r19.21v | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑓 : ℕ ⟶ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 20 | 18 19 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 21 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 22 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) | |
| 23 | 2 22 | sylan | ⊢ ( ( 𝜑 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) |
| 24 | 23 | ex | ⊢ ( 𝜑 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → 𝑥 ∈ 𝑋 ) ) |
| 25 | 24 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 26 | 25 | imbi1d | ⊢ ( 𝜑 → ( ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 27 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 28 | 26 27 | bitr2di | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 29 | 28 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 30 | 21 29 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝜑 → ( ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 32 | 20 31 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 33 | 32 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑓 ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 34 | 16 33 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 35 | 7 15 34 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |