This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping is continuous at P in a first-countable space X iff it is sequentially continuous at P , meaning that the image under F of every sequence converging at P converges to F ( P ) . This proof uses ax-cc , but only via 1stcelcls , so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1stccnp.1 | |- ( ph -> J e. 1stc ) |
|
| 1stccnp.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| 1stccnp.3 | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| 1stccnp.4 | |- ( ph -> P e. X ) |
||
| Assertion | 1stccnp | |- ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stccnp.1 | |- ( ph -> J e. 1stc ) |
|
| 2 | 1stccnp.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | 1stccnp.3 | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 4 | 1stccnp.4 | |- ( ph -> P e. X ) |
|
| 5 | 2 3 | jca | |- ( ph -> ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) ) |
| 6 | cnpf2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) |
|
| 7 | 6 | 3expa | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) |
| 8 | 5 7 | sylan | |- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) |
| 9 | simprr | |- ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) |
|
| 10 | simplr | |- ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> F e. ( ( J CnP K ) ` P ) ) |
|
| 11 | 9 10 | lmcnp | |- ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) |
| 12 | 11 | ex | |- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) |
| 13 | 12 | alrimiv | |- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) |
| 14 | 8 13 | jca | |- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) |
| 15 | simprl | |- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> F : X --> Y ) |
|
| 16 | fal | |- -. F. |
|
| 17 | 19.29 | |- ( ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> E. f ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) |
|
| 18 | simprl | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f : NN --> ( X \ ( `' F " u ) ) ) |
|
| 19 | difss | |- ( X \ ( `' F " u ) ) C_ X |
|
| 20 | fss | |- ( ( f : NN --> ( X \ ( `' F " u ) ) /\ ( X \ ( `' F " u ) ) C_ X ) -> f : NN --> X ) |
|
| 21 | 18 19 20 | sylancl | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f : NN --> X ) |
| 22 | simprr | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) |
|
| 23 | 21 22 | jca | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) |
| 24 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 25 | simplrr | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( F ` P ) e. u ) |
|
| 26 | 1zzd | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> 1 e. ZZ ) |
|
| 27 | simprr | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) |
|
| 28 | simplrl | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> u e. K ) |
|
| 29 | 24 25 26 27 28 | lmcvg | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u ) |
| 30 | 24 | r19.2uz | |- ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u -> E. k e. NN ( ( F o. f ) ` k ) e. u ) |
| 31 | simprll | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> f : NN --> ( X \ ( `' F " u ) ) ) |
|
| 32 | 31 | ffnd | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> f Fn NN ) |
| 33 | fvco2 | |- ( ( f Fn NN /\ k e. NN ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) |
|
| 34 | 32 33 | sylan | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) |
| 35 | 34 | eleq1d | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( F o. f ) ` k ) e. u <-> ( F ` ( f ` k ) ) e. u ) ) |
| 36 | 31 | ffvelcdmda | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( f ` k ) e. ( X \ ( `' F " u ) ) ) |
| 37 | 36 | eldifad | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( f ` k ) e. X ) |
| 38 | simplr | |- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> F : X --> Y ) |
|
| 39 | 38 | ad2antrr | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> F : X --> Y ) |
| 40 | ffn | |- ( F : X --> Y -> F Fn X ) |
|
| 41 | elpreima | |- ( F Fn X -> ( ( f ` k ) e. ( `' F " u ) <-> ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) ) ) |
|
| 42 | 39 40 41 | 3syl | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( f ` k ) e. ( `' F " u ) <-> ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) ) ) |
| 43 | 36 | eldifbd | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> -. ( f ` k ) e. ( `' F " u ) ) |
| 44 | 43 | pm2.21d | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( f ` k ) e. ( `' F " u ) -> F. ) ) |
| 45 | 42 44 | sylbird | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) -> F. ) ) |
| 46 | 37 45 | mpand | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( F ` ( f ` k ) ) e. u -> F. ) ) |
| 47 | 35 46 | sylbid | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( F o. f ) ` k ) e. u -> F. ) ) |
| 48 | 47 | rexlimdva | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( E. k e. NN ( ( F o. f ) ` k ) e. u -> F. ) ) |
| 49 | 30 48 | syl5 | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u -> F. ) ) |
| 50 | 29 49 | mpd | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> F. ) |
| 51 | 50 | expr | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( ( F o. f ) ( ~~>t ` K ) ( F ` P ) -> F. ) ) |
| 52 | 23 51 | embantd | |- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> F. ) ) |
| 53 | 52 | ex | |- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> F. ) ) ) |
| 54 | 53 | impcomd | |- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) |
| 55 | 54 | exlimdv | |- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. f ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) |
| 56 | 17 55 | syl5 | |- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) |
| 57 | 56 | exp4b | |- ( ( ph /\ F : X --> Y ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) ) |
| 58 | 57 | com23 | |- ( ( ph /\ F : X --> Y ) -> ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) ) |
| 59 | 58 | impr | |- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) |
| 60 | 59 | imp | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) |
| 61 | 16 60 | mtoi | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) |
| 62 | 1 | ad2antrr | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. 1stc ) |
| 63 | 2 | ad2antrr | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. ( TopOn ` X ) ) |
| 64 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 65 | 63 64 | syl | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> X = U. J ) |
| 66 | 19 65 | sseqtrid | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( X \ ( `' F " u ) ) C_ U. J ) |
| 67 | eqid | |- U. J = U. J |
|
| 68 | 67 | 1stcelcls | |- ( ( J e. 1stc /\ ( X \ ( `' F " u ) ) C_ U. J ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) |
| 69 | 62 66 68 | syl2anc | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) |
| 70 | 61 69 | mtbird | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) ) |
| 71 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 72 | 63 71 | syl | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. Top ) |
| 73 | 4 | ad2antrr | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> P e. X ) |
| 74 | 73 65 | eleqtrd | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> P e. U. J ) |
| 75 | 67 | elcls | |- ( ( J e. Top /\ ( X \ ( `' F " u ) ) C_ U. J /\ P e. U. J ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 76 | 72 66 74 75 | syl3anc | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 77 | 70 76 | mtbid | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) |
| 78 | 15 | ad2antrr | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> F : X --> Y ) |
| 79 | 78 | ffund | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> Fun F ) |
| 80 | toponss | |- ( ( J e. ( TopOn ` X ) /\ v e. J ) -> v C_ X ) |
|
| 81 | 63 80 | sylan | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> v C_ X ) |
| 82 | 78 | fdmd | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> dom F = X ) |
| 83 | 81 82 | sseqtrrd | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> v C_ dom F ) |
| 84 | funimass3 | |- ( ( Fun F /\ v C_ dom F ) -> ( ( F " v ) C_ u <-> v C_ ( `' F " u ) ) ) |
|
| 85 | 79 83 84 | syl2anc | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> v C_ ( `' F " u ) ) ) |
| 86 | dfss2 | |- ( v C_ X <-> ( v i^i X ) = v ) |
|
| 87 | 81 86 | sylib | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( v i^i X ) = v ) |
| 88 | 87 | sseq1d | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( v i^i X ) C_ ( `' F " u ) <-> v C_ ( `' F " u ) ) ) |
| 89 | 85 88 | bitr4d | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> ( v i^i X ) C_ ( `' F " u ) ) ) |
| 90 | nne | |- ( -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) <-> ( v i^i ( X \ ( `' F " u ) ) ) = (/) ) |
|
| 91 | inssdif0 | |- ( ( v i^i X ) C_ ( `' F " u ) <-> ( v i^i ( X \ ( `' F " u ) ) ) = (/) ) |
|
| 92 | 90 91 | bitr4i | |- ( -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) <-> ( v i^i X ) C_ ( `' F " u ) ) |
| 93 | 89 92 | bitr4di | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) |
| 94 | 93 | anbi2d | |- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( P e. v /\ ( F " v ) C_ u ) <-> ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 95 | 94 | rexbidva | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. v e. J ( P e. v /\ ( F " v ) C_ u ) <-> E. v e. J ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 96 | rexanali | |- ( E. v e. J ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) <-> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) |
|
| 97 | 95 96 | bitrdi | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. v e. J ( P e. v /\ ( F " v ) C_ u ) <-> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 98 | 77 97 | mpbird | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) |
| 99 | 98 | expr | |- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ u e. K ) -> ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) |
| 100 | 99 | ralrimiva | |- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) |
| 101 | iscnp | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ P e. X ) -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) |
|
| 102 | 2 3 4 101 | syl3anc | |- ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) |
| 103 | 102 | adantr | |- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) |
| 104 | 15 100 103 | mpbir2and | |- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> F e. ( ( J CnP K ) ` P ) ) |
| 105 | 14 104 | impbida | |- ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) ) |