This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmcnp.3 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| lmcnp.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) | ||
| Assertion | lmcnp | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcnp.3 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 2 | lmcnp.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3 4 | cnpf | ⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 7 | cnptop1 | ⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 12 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 13 | 10 11 12 | lmbr2 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) ) |
| 14 | 1 13 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
| 15 | 14 | simp1d | ⊢ ( 𝜑 → 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ) |
| 16 | 8 | uniexd | ⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
| 17 | cnex | ⊢ ℂ ∈ V | |
| 18 | elpm2g | ⊢ ( ( ∪ 𝐽 ∈ V ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ ) ) ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ ) ) ) |
| 20 | 15 19 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ ) ) |
| 21 | 20 | simpld | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ) |
| 22 | fco | ⊢ ( ( 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ) → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ∪ 𝐾 ) | |
| 23 | 6 21 22 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ∪ 𝐾 ) |
| 24 | 23 | ffdmd | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : dom ( 𝐺 ∘ 𝐹 ) ⟶ ∪ 𝐾 ) |
| 25 | 23 | fdmd | ⊢ ( 𝜑 → dom ( 𝐺 ∘ 𝐹 ) = dom 𝐹 ) |
| 26 | 20 | simprd | ⊢ ( 𝜑 → dom 𝐹 ⊆ ℂ ) |
| 27 | 25 26 | eqsstrd | ⊢ ( 𝜑 → dom ( 𝐺 ∘ 𝐹 ) ⊆ ℂ ) |
| 28 | cnptop2 | ⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐾 ∈ Top ) | |
| 29 | 2 28 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 30 | 29 | uniexd | ⊢ ( 𝜑 → ∪ 𝐾 ∈ V ) |
| 31 | elpm2g | ⊢ ( ( ∪ 𝐾 ∈ V ∧ ℂ ∈ V ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ↔ ( ( 𝐺 ∘ 𝐹 ) : dom ( 𝐺 ∘ 𝐹 ) ⟶ ∪ 𝐾 ∧ dom ( 𝐺 ∘ 𝐹 ) ⊆ ℂ ) ) ) | |
| 32 | 30 17 31 | sylancl | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ↔ ( ( 𝐺 ∘ 𝐹 ) : dom ( 𝐺 ∘ 𝐹 ) ⟶ ∪ 𝐾 ∧ dom ( 𝐺 ∘ 𝐹 ) ⊆ ℂ ) ) ) |
| 33 | 24 27 32 | mpbir2and | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ) |
| 34 | 14 | simp2d | ⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
| 35 | 6 34 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑃 ) ∈ ∪ 𝐾 ) |
| 36 | 14 | simp3d | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 38 | cnpimaex | ⊢ ( ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) | |
| 39 | 38 | 3expb | ⊢ ( ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 40 | 2 39 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 41 | r19.29 | ⊢ ( ( ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) | |
| 42 | pm3.45 | ⊢ ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) | |
| 43 | 42 | imp | ⊢ ( ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 44 | 43 | reximi | ⊢ ( ∃ 𝑣 ∈ 𝐽 ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 45 | 41 44 | syl | ⊢ ( ( ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 46 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 47 | 46 | ffnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝐺 Fn ∪ 𝐽 ) |
| 48 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑣 ∈ 𝐽 ) | |
| 49 | elssuni | ⊢ ( 𝑣 ∈ 𝐽 → 𝑣 ⊆ ∪ 𝐽 ) | |
| 50 | 48 49 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑣 ⊆ ∪ 𝐽 ) |
| 51 | fnfvima | ⊢ ( ( 𝐺 Fn ∪ 𝐽 ∧ 𝑣 ⊆ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) | |
| 52 | 51 | 3expia | ⊢ ( ( 𝐺 Fn ∪ 𝐽 ∧ 𝑣 ⊆ ∪ 𝐽 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 53 | 47 50 52 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 54 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ) |
| 55 | fvco3 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 56 | 54 55 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 57 | 56 | eleq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ( 𝐺 “ 𝑣 ) ↔ ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 58 | 53 57 | sylibrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 59 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) | |
| 60 | 59 | sseld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ( 𝐺 “ 𝑣 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 61 | 58 60 | syld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 62 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑘 ∈ dom 𝐹 ) | |
| 63 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → dom ( 𝐺 ∘ 𝐹 ) = dom 𝐹 ) |
| 64 | 62 63 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ) |
| 65 | 61 64 | jctild | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 66 | 65 | expimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 67 | 66 | ralimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 68 | 67 | reximdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 69 | 68 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐺 “ 𝑣 ) ⊆ 𝑢 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 70 | 69 | impcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 71 | 70 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ 𝐽 ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 72 | 45 71 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 73 | 37 40 72 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 74 | 73 | expr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 75 | 74 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐾 ( ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 76 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 77 | 29 76 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 78 | 77 11 12 | lmbr2 | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ ∪ 𝐾 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 79 | 33 35 75 78 | mpbir3and | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ) |