This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssub2 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ K || ( M - N ) ) -> ( K || M <-> K || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
|
| 2 | 1 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
| 3 | dvds2sub | |- ( ( K e. ZZ /\ M e. ZZ /\ ( M - N ) e. ZZ ) -> ( ( K || M /\ K || ( M - N ) ) -> K || ( M - ( M - N ) ) ) ) |
|
| 4 | 2 3 | syld3an3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || ( M - N ) ) -> K || ( M - ( M - N ) ) ) ) |
| 5 | 4 | ancomsd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M - N ) /\ K || M ) -> K || ( M - ( M - N ) ) ) ) |
| 6 | 5 | imp | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || M ) ) -> K || ( M - ( M - N ) ) ) |
| 7 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 8 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 9 | nncan | |- ( ( M e. CC /\ N e. CC ) -> ( M - ( M - N ) ) = N ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - ( M - N ) ) = N ) |
| 11 | 10 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M - ( M - N ) ) = N ) |
| 12 | 11 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || M ) ) -> ( M - ( M - N ) ) = N ) |
| 13 | 6 12 | breqtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || M ) ) -> K || N ) |
| 14 | 13 | expr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ K || ( M - N ) ) -> ( K || M -> K || N ) ) |
| 15 | dvds2add | |- ( ( K e. ZZ /\ ( M - N ) e. ZZ /\ N e. ZZ ) -> ( ( K || ( M - N ) /\ K || N ) -> K || ( ( M - N ) + N ) ) ) |
|
| 16 | 2 15 | syld3an2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M - N ) /\ K || N ) -> K || ( ( M - N ) + N ) ) ) |
| 17 | 16 | imp | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || N ) ) -> K || ( ( M - N ) + N ) ) |
| 18 | npcan | |- ( ( M e. CC /\ N e. CC ) -> ( ( M - N ) + N ) = M ) |
|
| 19 | 7 8 18 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M - N ) + N ) = M ) |
| 20 | 19 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M - N ) + N ) = M ) |
| 21 | 20 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || N ) ) -> ( ( M - N ) + N ) = M ) |
| 22 | 17 21 | breqtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || N ) ) -> K || M ) |
| 23 | 22 | expr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ K || ( M - N ) ) -> ( K || N -> K || M ) ) |
| 24 | 14 23 | impbid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ K || ( M - N ) ) -> ( K || M <-> K || N ) ) |