This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngunit.1 | |- U = ( Unit ` R ) |
|
| crngunit.2 | |- .1. = ( 1r ` R ) |
||
| crngunit.3 | |- .|| = ( ||r ` R ) |
||
| Assertion | crngunit | |- ( R e. CRing -> ( X e. U <-> X .|| .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngunit.1 | |- U = ( Unit ` R ) |
|
| 2 | crngunit.2 | |- .1. = ( 1r ` R ) |
|
| 3 | crngunit.3 | |- .|| = ( ||r ` R ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 7 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 8 | 4 5 6 7 | crngoppr | |- ( ( R e. CRing /\ y e. ( Base ` R ) /\ X e. ( Base ` R ) ) -> ( y ( .r ` R ) X ) = ( y ( .r ` ( oppR ` R ) ) X ) ) |
| 9 | 8 | 3expa | |- ( ( ( R e. CRing /\ y e. ( Base ` R ) ) /\ X e. ( Base ` R ) ) -> ( y ( .r ` R ) X ) = ( y ( .r ` ( oppR ` R ) ) X ) ) |
| 10 | 9 | eqcomd | |- ( ( ( R e. CRing /\ y e. ( Base ` R ) ) /\ X e. ( Base ` R ) ) -> ( y ( .r ` ( oppR ` R ) ) X ) = ( y ( .r ` R ) X ) ) |
| 11 | 10 | an32s | |- ( ( ( R e. CRing /\ X e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( y ( .r ` ( oppR ` R ) ) X ) = ( y ( .r ` R ) X ) ) |
| 12 | 11 | eqeq1d | |- ( ( ( R e. CRing /\ X e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( ( y ( .r ` ( oppR ` R ) ) X ) = .1. <-> ( y ( .r ` R ) X ) = .1. ) ) |
| 13 | 12 | rexbidva | |- ( ( R e. CRing /\ X e. ( Base ` R ) ) -> ( E. y e. ( Base ` R ) ( y ( .r ` ( oppR ` R ) ) X ) = .1. <-> E. y e. ( Base ` R ) ( y ( .r ` R ) X ) = .1. ) ) |
| 14 | 13 | pm5.32da | |- ( R e. CRing -> ( ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` ( oppR ` R ) ) X ) = .1. ) <-> ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` R ) X ) = .1. ) ) ) |
| 15 | 6 4 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 16 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 17 | 15 16 7 | dvdsr | |- ( X ( ||r ` ( oppR ` R ) ) .1. <-> ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` ( oppR ` R ) ) X ) = .1. ) ) |
| 18 | 4 3 5 | dvdsr | |- ( X .|| .1. <-> ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` R ) X ) = .1. ) ) |
| 19 | 14 17 18 | 3bitr4g | |- ( R e. CRing -> ( X ( ||r ` ( oppR ` R ) ) .1. <-> X .|| .1. ) ) |
| 20 | 19 | anbi2d | |- ( R e. CRing -> ( ( X .|| .1. /\ X ( ||r ` ( oppR ` R ) ) .1. ) <-> ( X .|| .1. /\ X .|| .1. ) ) ) |
| 21 | 1 2 3 6 16 | isunit | |- ( X e. U <-> ( X .|| .1. /\ X ( ||r ` ( oppR ` R ) ) .1. ) ) |
| 22 | pm4.24 | |- ( X .|| .1. <-> ( X .|| .1. /\ X .|| .1. ) ) |
|
| 23 | 20 21 22 | 3bitr4g | |- ( R e. CRing -> ( X e. U <-> X .|| .1. ) ) |