This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsnegb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || -u N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 2 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 3 | 2 | anim2i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ -u N e. ZZ ) ) |
| 4 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 5 | 4 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> -u x e. ZZ ) |
| 6 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 7 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 8 | mulneg1 | |- ( ( x e. CC /\ M e. CC ) -> ( -u x x. M ) = -u ( x x. M ) ) |
|
| 9 | negeq | |- ( ( x x. M ) = N -> -u ( x x. M ) = -u N ) |
|
| 10 | 9 | eqeq2d | |- ( ( x x. M ) = N -> ( ( -u x x. M ) = -u ( x x. M ) <-> ( -u x x. M ) = -u N ) ) |
| 11 | 8 10 | syl5ibcom | |- ( ( x e. CC /\ M e. CC ) -> ( ( x x. M ) = N -> ( -u x x. M ) = -u N ) ) |
| 12 | 6 7 11 | syl2anr | |- ( ( M e. ZZ /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( -u x x. M ) = -u N ) ) |
| 13 | 12 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( -u x x. M ) = -u N ) ) |
| 14 | 1 3 5 13 | dvds1lem | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> M || -u N ) ) |
| 15 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 16 | negeq | |- ( ( x x. M ) = -u N -> -u ( x x. M ) = -u -u N ) |
|
| 17 | negneg | |- ( N e. CC -> -u -u N = N ) |
|
| 18 | 16 17 | sylan9eqr | |- ( ( N e. CC /\ ( x x. M ) = -u N ) -> -u ( x x. M ) = N ) |
| 19 | 8 18 | sylan9eq | |- ( ( ( x e. CC /\ M e. CC ) /\ ( N e. CC /\ ( x x. M ) = -u N ) ) -> ( -u x x. M ) = N ) |
| 20 | 19 | expr | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
| 21 | 20 | 3impa | |- ( ( x e. CC /\ M e. CC /\ N e. CC ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
| 22 | 6 7 15 21 | syl3an | |- ( ( x e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
| 23 | 22 | 3coml | |- ( ( M e. ZZ /\ N e. ZZ /\ x e. ZZ ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
| 24 | 23 | 3expa | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
| 25 | 3 1 5 24 | dvds1lem | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || -u N -> M || N ) ) |
| 26 | 14 25 | impbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || -u N ) ) |